150 research outputs found

    Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition

    Get PDF
    Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; EspañaFil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; EspañaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; EspañaFil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; Españ

    Evaluation of brain functional connectivity from electroencephalographic signals under different emotional states

    Get PDF
    The identification of the emotional states corresponding to the four quadrants of the valence/arousal space has been widely analyzed in the scientific literature by means of multiple techniques. Nevertheless, most of these methods were based on the assessment of each brain region separately, without considering the possible interactions among different areas. In order to study these interconnections, this study computes for the first time the functional connectivity metric called cross-sample entropy for the analysis of the brain synchronization in four groups of emotions from electroencephalographic signals. Outcomes reported a strong synchronization in the interconnections among central, parietal and occipital areas, while the interactions between left frontal and temporal structures with the rest of brain regions presented the lowest coordination. These differences were statistically significant for the four groups of emotions. All emotions were simultaneously classified with a 95.43% of accuracy, overcoming the results reported in previous studies. Moreover, the differences between high and low levels of valence and arousal, taking into account the state of the counterpart dimension, also provided notable findings about the degree of synchronization in the brain within different emotional conditions and the possible implications of these outcomes from a psychophysiological point of view.- This publication is part of the R&D Projects Nos. PID2020-115220RB-C21, EQC2019-006063P, funded by MCIN/AEI/10.13039/501100011033/, and 2018/11744, funded by "ERDF A way to make Europe". This work was partially supported by Biomedical Research Networking Centre in Mental Health (CIBERSAM) of the Instituto de Salud Carlos III. Beatriz Garcia-Martinez holds FPU16/03740 scholarship from Spanish Ministerio de Educacion y Formacion Profesional

    Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics

    Get PDF
    Recently, the recognition of emotions with electroencephalographic (EEG) signals has received increasing attention. Furthermore, the nonstationarity of brain has intensified the application of nonlinear methods. Nonetheless, metrics like quadratic sample entropy (QSE), amplitude-aware permutation entropy (AAPE) and permutation min-entropy (PME) have never been applied to discern between more than two emotions. Therefore, this study computes for the first time QSE, AAPE and PME for recognition of four groups of emotions. After preprocessing the EEG recordings, the three entropy metrics were computed. Then, a tenfold classification approach based on a sequential forward selection scheme and a support vector machine classifier was implemented. This procedure was applied in a multi-class scheme including the four groups of study simultaneously, and in a binary-class approach for discerning emotions two by two, regarding their levels of arousal and valence. For both schemes, QSE+AAPE and QSE+PME were combined. In both multi-class and binary-class schemes, the best results were obtained in frontal and parietal brain areas. Furthermore, in most of the cases channels from QSE and AAPE/PME were selected in the classification models, thus highlighting the complementarity between those different types of entropy indices and achieving global accuracy results higher than 90% in multi-class and binary-class schemes. The combination of regularity- and predictability-based entropy indices denoted a high degree of complementarity between those nonlinear methods. Finally, the relevance of frontal and parietal areas for recognition of emotions has revealed the essential role of those brain regions in emotional processes.Facultad de IngenieríaCentro de Investigaciones Óptica

    An enhanced stress indices in signal processing based on advanced mmatthew correlation coefficient (MCCA) and multimodal function using EEG signal

    Get PDF
    Stress is a response to various environmental, psychological, and social factors, resulting in strain and pressure on individuals. Categorizing stress levels is a common practise, often using low, medium, and high stress categories. However, the limitation of only three stress levels is a significant drawback of the existing approach. This study aims to address this limitation and proposes an improved method for EEG feature extraction and stress level categorization. The main contribution of this work lies in the enhanced stress level categorization, which expands from three to six levels using the newly established fractional scale based on the quantities' scale influenced by MCCA and multimodal equation performance. The concept of standard deviation (STD) helps in categorizing stress levels by dividing the scale of quantities, leading to an improvement in the process. The lack of performance in the Matthew Correlation Coefficient (MCC) equation is observed in relation to accuracy values. Also, multimodal is rarely discussed in terms of parameters. Therefore, the MCCA and multimodal function provide the advantage of significantly enhancing accuracy as a part of the study's contribution. This study introduces the concept of an Advanced Matthew Correlation Coefficient (MCCA) and applies the six-sigma framework to enhance accuracy in stress level categorization. The research focuses on expanding the stress levels from three to six, utilizing a new scale of fractional stress levels influenced by MCCA and multimodal equation performance. Furthermore, the study applies signal pre-processing techniques to filter and segregate the EEG signal into Delta, Theta, Alpha, and Beta frequency bands. Subsequently, feature extraction is conducted, resulting in twenty-one statistical and non-statistical features. These features are employed in both the MCCA and multimodal function analysis. The study employs the Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (k-NN) classifiers for stress level validation. After conducting experiments and performance evaluations, RF demonstrates the highest average accuracy of 85%–10% in 10-Fold and K-Fold techniques, outperforming SVM and k-NN. In conclusion, this study presents an improved approach to stress level categorization and EEG feature extraction. The proposed Advanced Matthew Correlation Coefficient (MCCA) and six-sigma framework contribute to achieving higher accuracy, surpassing the limitations of the existing three-level categorization. The results indicate the superiority of the Random Forest classifier over SVM and k-NN. This research has implications for various applications and fields, providing a more effective equation to accurately categorize stress levels with a potential accuracy exceeding 95%

    The enhancement on stress levels based on physiological signal and self-stress assessment

    Get PDF
    The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used are peak-to-peak values, mean, standard deviation and root means square (RMS). The unique features in this research are Matthew Correlation Coefficient Advanced (MCCA) and multimodal capabilities in the area of frequency and time-frequency analysis are proposed. In the frequency domain, Power Spectral Density (PSD) techniques were applied while Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were utilized to extract seven features based on time-frequency domain. Various methods applied from previous works are still limited by the stress indices. The merged works between quantities score and physiological measurements were enhanced the stress level from three-levels to six stress levels based on music application will be the second contribution. To validate the proposed method and enhance performance between electroencephalogram (EEG) signals and stress score, support vector machine (SVM), random forest (RF), K- nearest neighbor (KNN) classifier is needed. From the finding, RF gained the best performance average accuracy 85% ±10% in Ten-fold and K-fold techniques compared with SVM and KNN

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    The thalamocortical symphony:How thalamus and cortex play together in schizophrenia and plasticity

    Get PDF
    The work presented in this thesis aimed at investigating the function and mechanism of corticothalamic-thalamocortical network in schizophrenia and experience-dependent plasticity, further discussed their possible connection.In Chapter 2, we examined the effects of low-dose ketamine on the corticothalamic circuit (CTC) system. Our findings reveal that ketamine induces abnormal spindle activity and gamma oscillations in the CTC system. Notably, ketamine also leads to a transition in thalamic neurons from burst-firing to tonic action potential mode, which may underlie deficits in spindle oscillations. Chapter 3 addresses sensory perception deficits in schizophrenia, emphasizing disruptions in beta and gamma frequency oscillations due to signal-to-noise ratio imbalances. Chapter 4 explores experience-dependent plasticity, highlighting the role of thalamic synaptic inhibition in ocular dominance plasticity and the influence of cortical feedback. Chapter 5 investigates the involvement of endocannabinoids, particularly CB1 receptors, in inhibitory synaptic maturation and ocular dominance plasticity within the primary visual cortex.The general discussion raises the possibility of a link between neural plasticity and schizophrenia, particularly during the transformative phase of adolescence when the brain undergoes significant changes. An abnormal balance between inhibition and excitation, influenced by GABAergic maturation deficits, connectivity disruptions, and altered perceptual information transfer, may contribute to the development of schizophrenia.This thesis offers valuable insights into the intricate mechanisms underlying schizophrenia, with a particular focus on the CTC circuit, NMDA receptors, and endocannabinoids in the context of neuronal plasticity and cognitive function

    The thalamocortical symphony:How thalamus and cortex play together in schizophrenia and plasticity

    Get PDF
    The work presented in this thesis aimed at investigating the function and mechanism of corticothalamic-thalamocortical network in schizophrenia and experience-dependent plasticity, further discussed their possible connection.In Chapter 2, we examined the effects of low-dose ketamine on the corticothalamic circuit (CTC) system. Our findings reveal that ketamine induces abnormal spindle activity and gamma oscillations in the CTC system. Notably, ketamine also leads to a transition in thalamic neurons from burst-firing to tonic action potential mode, which may underlie deficits in spindle oscillations. Chapter 3 addresses sensory perception deficits in schizophrenia, emphasizing disruptions in beta and gamma frequency oscillations due to signal-to-noise ratio imbalances. Chapter 4 explores experience-dependent plasticity, highlighting the role of thalamic synaptic inhibition in ocular dominance plasticity and the influence of cortical feedback. Chapter 5 investigates the involvement of endocannabinoids, particularly CB1 receptors, in inhibitory synaptic maturation and ocular dominance plasticity within the primary visual cortex.The general discussion raises the possibility of a link between neural plasticity and schizophrenia, particularly during the transformative phase of adolescence when the brain undergoes significant changes. An abnormal balance between inhibition and excitation, influenced by GABAergic maturation deficits, connectivity disruptions, and altered perceptual information transfer, may contribute to the development of schizophrenia.This thesis offers valuable insights into the intricate mechanisms underlying schizophrenia, with a particular focus on the CTC circuit, NMDA receptors, and endocannabinoids in the context of neuronal plasticity and cognitive function

    EEG and ERP biomarkers of Alzheimer's disease: a critical review

    Get PDF
    Here we critically review studies that used electroencephalography (EEG) or event-related potential (ERP) indices as a biomarker of Alzheimer's disease. In the first part we overview studies that relied on visual inspection of EEG traces and spectral characteristics of EEG. Second, we survey analysis methods motivated by dynamical systems theory (DST) as well as more recent network connectivity approaches. In the third part we review studies of sleep. Next, we compare the utility of early and late ERP components in dementia research. In the section on mismatch negativity (MMN) studies we summarize their results and limitations and outline the emerging field of computational neurology. In the following we overview the use of EEG in the differential diagnosis of the most common neurocognitive disorders. Finally, we provide a summary of the state of the field and conclude that several promising EEG/ERP indices of synaptic neurotransmission are worth considering as potential biomarkers. Furthermore, we highlight some practical issues and discuss future challenges as well
    • …
    corecore