40 research outputs found

    Optimized Adaptive Frangi-based Coronary Artery Segmentation using Genetic Algorithm

    Get PDF
    Diseases of coronary artery are deliberated as one of the most common heart diseases leading to death worldwide. For early detection of such disease, the X-ray angiography is a benchmark imaging modality for diagnosing such illness. The acquired X-ray angiography images usually suffer from low quality and the presence of noise. Therefore, for developing a computer-aided diagnosis (CAD) system, vessel enhancement and segmentation play significant role. In this paper, an optimized adapter filter based on Frangi filter was proposed for superior segmentation of the angiography images using genetic algorithm (GA). The original angiography image is initially preprocessed to enhance its contrast followed by generating the vesselness map using the proposed optimized Frangi filter. Then, a segmentation technique is applied to extract only the artery vessels, where the proposed system for extracting only the main vessel was evaluated. The experimental results on angiography images established the superiority of the vessel regions extraction showing 98.58% accuracy compared to the state-of-the-art

    Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation of the coronary angiogram is important in computer-assisted artery motion analysis or reconstruction of 3D vascular structures from a single-plan or biplane angiographic system. Developing fully automated and accurate vessel segmentation algorithms is highly challenging, especially when extracting vascular structures with large variations in image intensities and noise, as well as with variable cross-sections or vascular lesions.</p> <p>Methods</p> <p>This paper presents a novel tracking method for automatic segmentation of the coronary artery tree in X-ray angiographic images, based on probabilistic vessel tracking and fuzzy structure pattern inferring. The method is composed of two main steps: preprocessing and tracking. In preprocessing, multiscale Gabor filtering and Hessian matrix analysis were used to enhance and extract vessel features from the original angiographic image, leading to a vessel feature map as well as a vessel direction map. In tracking, a seed point was first automatically detected by analyzing the vessel feature map. Subsequently, two operators [e.g., a probabilistic tracking operator (PTO) and a vessel structure pattern detector (SPD)] worked together based on the detected seed point to extract vessel segments or branches one at a time. The local structure pattern was inferred by a multi-feature based fuzzy inferring function employed in the SPD. The identified structure pattern, such as crossing or bifurcation, was used to control the tracking process, for example, to keep tracking the current segment or start tracking a new one, depending on the detected pattern.</p> <p>Results</p> <p>By appropriate integration of these advanced preprocessing and tracking steps, our tracking algorithm is able to extract both vessel axis lines and edge points, as well as measure the arterial diameters in various complicated cases. For example, it can walk across gaps along the longitudinal vessel direction, manage varying vessel curvatures, and adapt to varying vessel widths in situations with arterial stenoses and aneurysms.</p> <p>Conclusions</p> <p>Our algorithm performs well in terms of robustness, automation, adaptability, and applicability. In particular, the successful development of two novel operators, namely, PTO and SPD, ensures the performance of our algorithm in vessel tracking.</p

    Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Get PDF
    Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.https://doi.org/10.3390/app802015

    AUTOMATIC RETINAL VESSEL DETECTION AND TORTUOSITY MEASUREMENT

    Full text link

    A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features

    Get PDF
    This paper proposes a new supervised method for blood vessel segmentation using Zernike moment-based shape descriptors. The method implements a pixel wise classification by computing a 11-D feature vector comprising of both statistical (gray-level) features and shape-based (Zernike moment) features. Also the feature set contains optimal coefficients of the Zernike Moments which were derived based on the maximum differentiability between the blood vessel and background pixels. A manually selected training points obtained from the training set of the DRIVE dataset, covering all possible manifestations were used for training the ANN-based binary classifier. The method was evaluated on unknown test samples of DRIVE and STARE databases and returned accuracies of 0.945 and 0.9486 respectively, outperforming other existing supervised learning methods. Further, the segmented outputs were able to cover thinner blood vessels better than previous methods, aiding in early detection of pathologies

    A Multi-Anatomical Retinal Structure Segmentation System For Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    Get PDF
    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue to detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This thesis proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogenous anatomical structures

    Tracking of coronary arteries in angiogram sequence by structural matching of junctions

    Get PDF
    Master'sMASTER OF SCIENC

    Curvilinear Structure Enhancement in Biomedical Images

    Get PDF
    Curvilinear structures can appear in many different areas and at a variety of scales. They can be axons and dendrites in the brain, blood vessels in the fundus, streets, rivers or fractures in buildings, and others. So, it is essential to study curvilinear structures in many fields such as neuroscience, biology, and cartography regarding image processing. Image processing is an important field for the help to aid in biomedical imaging especially the diagnosing the disease. Image enhancement is the early step of image analysis. In this thesis, I focus on the research, development, implementation, and validation of 2D and 3D curvilinear structure enhancement methods, recently established. The proposed methods are based on phase congruency, mathematical morphology, and tensor representation concepts. First, I have introduced a 3D contrast independent phase congruency-based enhancement approach. The obtained results demonstrate the proposed approach is robust against the contrast variations in 3D biomedical images. Second, I have proposed a new mathematical morphology-based approach called the bowler-hat transform. In this approach, I have combined the mathematical morphology with a local tensor representation of curvilinear structures in images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. Especially the proposed method is quite successful while enhancing of curvilinear structures at junctions. Finally, I have extended the bowler-hat approach to the 3D version to prove the applicability, reliability, and ability of it in 3D

    Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation

    Get PDF
    Purpose: Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries / veins classi cation are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. Methods: We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A non-local total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. Results: The proposed segmentation method yields competitive results on three pub- lic datasets (STARE, DRIVE, and IOSTAR), and it has superior performance when com- pared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to ve public databases 1 (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries / veins classi cation based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. Conclusions: The experimental results show that the proposed framework has e ectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology recon- struction. The vascular topology information signi cantly improves the accuracy on arteries / veins classi cation
    corecore