657 research outputs found

    Multiscale Centerline Detection by Learning a Scale-Space Distance Transform

    Get PDF
    We propose a robust and accurate method to extract the centerlines and scale of tubular structures in 2D images and 3D volumes. Existing techniques rely either on filters designed to respond to ideal cylindrical structures, which lose accuracy when the linear structures become very irregular, or on classification, which is inaccurate because locations on centerlines and locations immediately next to them are extremely difficult to distinguish. We solve this problem by reformulating centerline detection in terms of a regression problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets

    Multiscale Centerline Extraction Based on Regression and Projection onto the Set of Elongated Structures

    Get PDF
    Automatically extracting linear structures from images is a fundamental low-level vision problem with numerous applications in different domains. Centerline detection and radial estimation are the first crucial steps in most Computer Vision pipelines aiming to reconstruct linear structures. Existing techniques rely either on hand-crafted filters, designed to respond to ideal profiles of the linear structure, or on classification-based approaches, which automatically learn to detect centerline points from data. Hand-crafted methods are the most accurate when the content of the image fulfills the ideal model they rely on. However, they lose accuracy in the presence of noise or when the linear structures are irregular and deviate from the ideal case. Machine learning techniques can alleviate this problem. However, they are mainly based on a classification framework. In this thesis, we show that classification is not the best formalism to solve the centerline detection problem. In fact, since the appearance of a centerline point is very similar to the points immediately next to it, the output of a classifier trained to detect centerlines presents low localization accuracy and double responses on the body of the linear structure. To solve this problem, we propose a regression-based formulation for centerline detection. We rely on the distance transform of the centerlines to automatically learn a function whose local maxima correspond to centerline points. The output of our method can be used to directly estimate the location of the centerline, by a simple Non-Maximum Suppression operation, or it can be used as input to a tracing pipeline to reconstruct the graph of the linear structure. In both cases, our method gives more accurate results than state-of-the-art techniques on challenging 2D and 3D datasets. Our method relies on features extracted by means of convolutional filters. In order to process large amount of data efficiently, we introduce a general filter bank approximation scheme. In particular, we show that a generic filter bank can be approximated by a linear combination of a smaller set of separable filters. Thanks to this method, we can greatly reduce the computation time of the convolutions, without loss of accuracy. Our approach is general, and we demonstrate its effectiveness by applying it to different Computer Vision problems, such as linear structure detection and image classification with Convolutional Neural Networks. We further improve our regression-based method for centerline detection by taking advantage of contextual image information. We adopt a multiscale iterative regression approach to efficiently include a large image context in our algorithm. Compared to previous approaches, we use context both in the spatial domain and in the radial one. In this way, our method is also able to return an accurate estimation of the radii of the linear structures. The idea of using regression can also be beneficial for solving other related Computer Vision problems. For example, we show an improvement compared to previous works when applying it to boundary and membrane detection. Finally, we focus on the particular geometric properties of the linear structures. We observe that most methods for detecting them treat each pixel independently and do not model the strong relation that exists between neighboring pixels. As a consequence, their output is geometrically inconsistent. In this thesis, we address this problem by considering the projection of the score map returned by our regressor onto the set of all geometrically admissible ground truth images. We propose an efficient patch-wise approximation scheme to compute the projection. Moreover, we provide conditions under which the projection is exact. We demonstrate the advantage of our method by applying it to four different problems

    Computational Analysis of Fundus Images: Rule-Based and Scale-Space Models

    Get PDF
    Fundus images are one of the most important imaging examinations in modern ophthalmology because they are simple, inexpensive and, above all, noninvasive. Nowadays, the acquisition and storage of highresolution fundus images is relatively easy and fast. Therefore, fundus imaging has become a fundamental investigation in retinal lesion detection, ocular health monitoring and screening programmes. Given the large volume and clinical complexity associated with these images, their analysis and interpretation by trained clinicians becomes a timeconsuming task and is prone to human error. Therefore, there is a growing interest in developing automated approaches that are affordable and have high sensitivity and specificity. These automated approaches need to be robust if they are to be used in the general population to diagnose and track retinal diseases. To be effective, the automated systems must be able to recognize normal structures and distinguish them from pathological clinical manifestations. The main objective of the research leading to this thesis was to develop automated systems capable of recognizing and segmenting retinal anatomical structures and retinal pathological clinical manifestations associated with the most common retinal diseases. In particular, these automated algorithms were developed on the premise of robustness and efficiency to deal with the difficulties and complexity inherent in these images. Four objectives were considered in the analysis of fundus images. Segmentation of exudates, localization of the optic disc, detection of the midline of blood vessels, segmentation of the vascular network and detection of microaneurysms. In addition, we also evaluated the detection of diabetic retinopathy on fundus images using the microaneurysm detection method. An overview of the state of the art is presented to compare the performance of the developed approaches with the main methods described in the literature for each of the previously described objectives. To facilitate the comparison of methods, the state of the art has been divided into rulebased methods and machine learningbased methods. In the research reported in this paper, rulebased methods based on image processing methods were preferred over machine learningbased methods. In particular, scalespace methods proved to be effective in achieving the set goals. Two different approaches to exudate segmentation were developed. The first approach is based on scalespace curvature in combination with the local maximum of a scalespace blob detector and dynamic thresholds. The second approach is based on the analysis of the distribution function of the maximum values of the noise map in combination with morphological operators and adaptive thresholds. Both approaches perform a correct segmentation of the exudates and cope well with the uneven illumination and contrast variations in the fundus images. Optic disc localization was achieved using a new technique called cumulative sum fields, which was combined with a vascular enhancement method. The algorithm proved to be reliable and efficient, especially for pathological images. The robustness of the method was tested on 8 datasets. The detection of the midline of the blood vessels was achieved using a modified corner detector in combination with binary philtres and dynamic thresholding. Segmentation of the vascular network was achieved using a new scalespace blood vessels enhancement method. The developed methods have proven effective in detecting the midline of blood vessels and segmenting vascular networks. The microaneurysm detection method relies on a scalespace microaneurysm detection and labelling system. A new approach based on the neighbourhood of the microaneurysms was used for labelling. Microaneurysm detection enabled the assessment of diabetic retinopathy detection. The microaneurysm detection method proved to be competitive with other methods, especially with highresolution images. Diabetic retinopathy detection with the developed microaneurysm detection method showed similar performance to other methods and human experts. The results of this work show that it is possible to develop reliable and robust scalespace methods that can detect various anatomical structures and pathological features of the retina. Furthermore, the results obtained in this work show that although recent research has focused on machine learning methods, scalespace methods can achieve very competitive results and typically have greater independence from image acquisition. The methods developed in this work may also be relevant for the future definition of new descriptors and features that can significantly improve the results of automated methods.As imagens do fundo do olho são hoje um dos principais exames imagiológicos da oftalmologia moderna, pela sua simplicidade, baixo custo e acima de tudo pelo seu carácter nãoinvasivo. A aquisição e armazenamento de imagens do fundo do olho com alta resolução é também relativamente simples e rápida. Desta forma, as imagens do fundo do olho são um exame fundamental na identificação de alterações retinianas, monitorização da saúde ocular, e em programas de rastreio. Considerando o elevado volume e complexidade clínica associada a estas imagens, a análise e interpretação das mesmas por clínicos treinados tornase uma tarefa morosa e propensa a erros humanos. Assim, há um interesse crescente no desenvolvimento de abordagens automatizadas, acessíveis em custo, e com uma alta sensibilidade e especificidade. Estas devem ser robustas para serem aplicadas à população em geral no diagnóstico e seguimento de doenças retinianas. Para serem eficazes, os sistemas de análise têm que conseguir detetar e distinguir estruturas normais de sinais patológicos. O objetivo principal da investigação que levou a esta tese de doutoramento é o desenvolvimento de sistemas automáticos capazes de detetar e segmentar as estruturas anatómicas da retina, e os sinais patológicos retinianos associados às doenças retinianas mais comuns. Em particular, estes algoritmos automatizados foram desenvolvidos segundo as premissas de robustez e eficácia para lidar com as dificuldades e complexidades inerentes a estas imagens. Foram considerados quatro objetivos de análise de imagens do fundo do olho. São estes, a segmentação de exsudados, a localização do disco ótico, a deteção da linha central venosa dos vasos sanguíneos e segmentação da rede vascular, e a deteção de microaneurismas. De acrescentar que usando o método de deteção de microaneurismas, avaliouse também a capacidade de deteção da retinopatia diabética em imagens do fundo do olho. Para comparar o desempenho das metodologias desenvolvidas neste trabalho, foi realizado um levantamento do estado da arte, onde foram considerados os métodos mais relevantes descritos na literatura para cada um dos objetivos descritos anteriormente. Para facilitar a comparação entre métodos, o estado da arte foi dividido em metodologias de processamento de imagem e baseadas em aprendizagem máquina. Optouse no trabalho de investigação desenvolvido pela utilização de metodologias de análise espacial de imagem em detrimento de metodologias baseadas em aprendizagem máquina. Em particular, as metodologias baseadas no espaço de escalas mostraram ser efetivas na obtenção dos objetivos estabelecidos. Para a segmentação de exsudados foram usadas duas abordagens distintas. A primeira abordagem baseiase na curvatura em espaço de escalas em conjunto com a resposta máxima local de um detetor de manchas em espaço de escalas e limiares dinâmicos. A segunda abordagem baseiase na análise do mapa de distribuição de ruído em conjunto com operadores morfológicos e limiares adaptativos. Ambas as abordagens fazem uma segmentação dos exsudados de elevada precisão, além de lidarem eficazmente com a iluminação nãouniforme e a variação de contraste presente nas imagens do fundo do olho. A localização do disco ótico foi conseguida com uma nova técnica designada por campos de soma acumulativos, combinada com métodos de melhoramento da rede vascular. O algoritmo revela ser fiável e eficiente, particularmente em imagens patológicas. A robustez do método foi verificada pela sua avaliação em oito bases de dados. A deteção da linha central dos vasos sanguíneos foi obtida através de um detetor de cantos modificado em conjunto com filtros binários e limiares dinâmicos. A segmentação da rede vascular foi conseguida com um novo método de melhoramento de vasos sanguíneos em espaço de escalas. Os métodos desenvolvidos mostraram ser eficazes na deteção da linha central dos vasos sanguíneos e na segmentação da rede vascular. Finalmente, o método para a deteção de microaneurismas assenta num formalismo de espaço de escalas na deteção e na rotulagem dos microaneurismas. Para a rotulagem foi utilizada uma nova abordagem da vizinhança dos candidatos a microaneurismas. A deteção de microaneurismas permitiu avaliar também a deteção da retinopatia diabética. O método para a deteção de microaneurismas mostrou ser competitivo quando comparado com outros métodos, em particular em imagens de alta resolução. A deteção da retinopatia diabética exibiu um desempenho semelhante a outros métodos e a especialistas humanos. Os trabalhos descritos nesta tese mostram ser possível desenvolver uma abordagem fiável e robusta em espaço de escalas capaz de detetar diferentes estruturas anatómicas e sinais patológicos da retina. Além disso, os resultados obtidos mostram que apesar de a pesquisa mais recente concentrarse em metodologias de aprendizagem máquina, as metodologias de análise espacial apresentam resultados muito competitivos e tipicamente independentes do equipamento de aquisição das imagens. As metodologias desenvolvidas nesta tese podem ser importantes na definição de novos descritores e características, que podem melhorar significativamente o resultado de métodos automatizados

    Multiscale Centerline Detection

    Get PDF
    Finding the centerline and estimating the radius of linear structures is a critical first step in many applications, ranging from road delineation in 2D aerial images to modeling blood vessels, lung bronchi, and dendritic arbors in 3D biomedical image stacks. Existing techniques rely either on filters designed to respond to ideal cylindrical structures or on classification techniques. The former tend to become unreliable when the linear structures are very irregular while the latter often has difficulties distinguishing centerline locations from neighboring ones, thus losing accuracy. We solve this problem by reformulating centerline detection in terms of a \emph{regression} problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets. Moreover, our approach is very generic and also performs well on contour detection. We show an improvement above recent contour detection algorithms on the BSDS500 dataset

    Recurrent Pixel Embedding for Instance Grouping

    Full text link
    We introduce a differentiable, end-to-end trainable framework for solving pixel-level grouping problems such as instance segmentation consisting of two novel components. First, we regress pixels into a hyper-spherical embedding space so that pixels from the same group have high cosine similarity while those from different groups have similarity below a specified margin. We analyze the choice of embedding dimension and margin, relating them to theoretical results on the problem of distributing points uniformly on the sphere. Second, to group instances, we utilize a variant of mean-shift clustering, implemented as a recurrent neural network parameterized by kernel bandwidth. This recurrent grouping module is differentiable, enjoys convergent dynamics and probabilistic interpretability. Backpropagating the group-weighted loss through this module allows learning to focus on only correcting embedding errors that won't be resolved during subsequent clustering. Our framework, while conceptually simple and theoretically abundant, is also practically effective and computationally efficient. We demonstrate substantial improvements over state-of-the-art instance segmentation for object proposal generation, as well as demonstrating the benefits of grouping loss for classification tasks such as boundary detection and semantic segmentation

    Vessel tractography using an intensity based tensor model with branch detection

    Get PDF
    In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert

    DeepNav: Joint View Learning for Direct Optimal Path Perception in Cochlear Surgical Platform Navigation

    Get PDF
    Although much research has been conducted in the field of automated cochlear implant navigation, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as identifying the optimal navigation zone (OPZ) in the cochlear. In this paper, a 2.5D joint-view convolutional neural network (2.5D CNN) is proposed and evaluated for the identification of the OPZ in the cochlear segments. The proposed network consists of 2 complementary sagittal and bird-view (or top view) networks for the 3D OPZ recognition, each utilizing a ResNet-8 architecture consisting of 5 convolutional layers with rectified nonlinearity unit (ReLU) activations, followed by average pooling with size equal to the size of the final feature maps. The last fully connected layer of each network has 4 indicators, equivalent to the classes considered: the distance to the adjacent left and right walls, collision probability and heading angle. To demonstrate this, the 2.5D CNN was trained using a parametric data generation model, and then evaluated using anatomically constructed cochlea models from the micro-CT images of different cases. Prediction of the indicators demonstrates the effectiveness of the 2.5D CNN, for example the heading angle has less than 1° error with computation delays of less that <1 milliseconds

    Road Segmentation for Remote Sensing Images using Adversarial Spatial Pyramid Networks

    Full text link
    Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insufficient training data or high costs of manual annotation. To address these problems, we introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation. We incorporate a feature pyramid network into generative adversarial networks to minimize the difference between the source and target domains. A generator is learned to produce quality synthetic images, and the discriminator attempts to distinguish them. We also propose a feature pyramid network that improves the performance of the proposed model by extracting effective features from all the layers of the network for describing different scales objects. Indeed, a novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features. For optimization, the model is trained by a joint reconstruction loss function, which minimizes the difference between the fake images and the real ones. A wide range of experiments on three datasets prove the superior performance of the proposed approach in terms of accuracy and efficiency. In particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches used in the evaluation
    corecore