321 research outputs found

    Statistical Models for Co-occurrence Data

    Get PDF
    Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms

    Shape and Topology Constrained Image Segmentation with Stochastic Models

    Get PDF
    The central theme of this thesis has been to develop robust algorithms for the task of image segmentation. All segmentation techniques that have been proposed in this thesis are based on the sound modeling of the image formation process. This approach to image partition enables the derivation of objective functions, which make all modeling assumptions explicit. Based on the Parametric Distributional Clustering (PDC) technique, improved variants have been derived, which explicitly incorporate topological assumptions in the corresponding cost functions. In this thesis, the questions of robustness and generalizability of segmentation solutions have been addressed in an empirical manner, giving comprehensive example sets for both problems. It has been shown, that the PDC framework is indeed capable of producing highly robust image partitions. In the context of PDC-based segmentation, a probabilistic representation of shape has been constructed. Furthermore, likelihood maps for given objects of interest were derived from the PDC cost function. Interpreting the shape information as a prior for the segmentation task, it has been combined with the likelihoods in a Bayesian setting. The resulting posterior probability for the occurrence of an object of a specified semantic category has been demonstrated to achieve excellent segmentation quality on very hard testbeds of images from the Corel gallery

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Overview: Computer vision and machine learning for microstructural characterization and analysis

    Full text link
    The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions

    Survey of contemporary trends in color image segmentation

    Full text link

    Markov rasgele alanları aracılığı ile anlam bilgisi ve imge bölütlemenin birleştirilmesi.

    Get PDF
    The formulation of image segmentation problem is evolved considerably, from the early years of computer vision in 1970s to these years, in 2010s. While the initial studies offer mostly unsupervised approaches, a great deal of recent studies shift towards the supervised solutions. This is due to the advancements in the cognitive science and its influence on the computer vision research. Also, accelerated availability of computational power enables the researchers to develop complex algorithms. Despite the great effort on the image segmentation research, the state of the art techniques still fall short to satisfy the need of the further processing steps of computer vision. This study is another attempt to generate a “substantially complete” segmentation output for the consumption of object classification, recognition and detection steps. Our approach is to fuse the multiple segmentation outputs in order to achieve the “best” result with respect to a cost function. The proposed approach, called Boosted-MRF, elegantly formulates the segmentation fusion problem as a Markov Random Fields (MRF) model in an unsupervised framework. For this purpose, a set of initial segmentation outputs is obtained and the consensus among the segmentation partitions are formulated in the energy function of the Markov Random Fields model. Finally, minimization of the energy function yields the “best” consensus among the segmentation ensemble. We proceed one step further to improve the performance of the Boosted-MRF by introducing some auxiliary domain information into the segmentation fusion process. This enhanced segmentation fusion method, called the Domain Specific MRF, updates the energy function of the MRF model by the available information which is received from a domain expert. For this purpose, a top-down segmentation method is employed to obtain a set of Domain Specific Segmentation Maps which are incomplete segmentations of a given image. Therefore, in this second segmentation fusion method, in addition to the set of bottom-up segmentation ensemble, we generate ensemble of top-down Domain Specific Segmentation Maps. Based on the bottom–up and top down segmentation ensembles a new MRF energy function is defined. Minimization of this energy function yields the “best” consensus which is consistent with the domain specific information. The experiments performed on various datasets show that the proposed segmentation fusion methods improve the performances of the segmentation outputs in the ensemble measured with various indexes, such as Probabilistic Rand Index, Mutual Information. The Boosted-MRF method is also compared to a popular segmentation fusion method, namely, Best of K. The Boosted-MRF is slightly better than the Best of K method. The suggested Domain Specific-MRF method is applied on a set of outdoor images with vegetation where vegetation information is utilized as domain specific information. A slight improvement in the performance is recorded in this experiment. The method is also applied on remotely sensed dataset of building images, where more advanced domain specific information is available. The segmentation performance is evaluated with a performance measure which is specifically defined to estimate the segmentation performance for building images. In these two experiments with the Domain Specific-MRF method, it is observed that, as long as reliable domain specific information is available, the segmentation performance improves significantly.Ph.D. - Doctoral Progra

    Image Partitioning based on Semidefinite Programming

    Full text link
    Many tasks in computer vision lead to combinatorial optimization problems. Automatic image partitioning is one of the most important examples in this context: whether based on some prior knowledge or completely unsupervised, we wish to find coherent parts of the image. However, the inherent combinatorial complexity of such problems often prevents to find the global optimum in polynomial time. For this reason, various approaches have been proposed to find good approximative solutions for image partitioning problems. As an important example, we will first consider different spectral relaxation techniques: based on straightforward eigenvector calculations, these methods compute suboptimal solutions in short time. However, the main contribution of this thesis is to introduce a novel optimization technique for discrete image partitioning problems which is based on a semidefinite programming relaxation. In contrast to approximation methods employing annealing algorithms, this approach involves solving a convex optimization problem, which does not suffer from possible local minima. Using interior point techniques, the solution of the relaxation can be found in polynomial time, and without elaborate parameter tuning. High quality solutions to the original combinatorial problem are then obtained with a randomized rounding technique. The only potential drawback of the semidefinite relaxation approach is that the number of variables of the optimization problem is squared. Nevertheless, it can still be applied to problems with up to a few thousand variables, as is demonstrated for various computer vision tasks including unsupervised segmentation, perceptual grouping and image restoration. Concerning problems of higher dimensionality, we study two different approaches to effectively reduce the number of variables. The first one is based on probabilistic sampling: by considering only a small random fraction of the pixels in the image, our semidefinite relaxation method can be applied in an efficient way while maintaining a reliable quality of the resulting segmentations. The second approach reduces the problem size by computing an over-segmentation of the image in a preprocessing step. After that, the image is partitioned based on the resulting "superpixels" instead of the original pixels. Since the real world does not consist of pixels, it can even be argued that this is the more natural image representation. Initially, our semidefinite relaxation method is defined only for binary partitioning problems. To derive image segmentations into multiple parts, one possibility is to apply the binary approach in a hierarchical way. Besides this natural extension, we also discuss how multiclass partitioning problems can be solved in a direct way based on semidefinite relaxation techniques
    • …
    corecore