3 research outputs found

    Fractionally sampled decorrelating detectors for time-varying rayleigh fading CDMA channels

    Get PDF
    In this dissertation, we propose novel decorrelating multiuser detectors in DSCDMA time-varying frequency-nonselective and frequency-selective fading channels and analyze their performance. We address the common shortcomings of existing multiuser detectors in a mobile environment, such as detector complexity and the error floor. An analytical approach is employed almost exclusively and Monte Carlo simulation is used to confirm the theoretical results. Practical channel models, such as Jakes\u27 and Markovian, are adopted in the numerical examples. The proposed detectors are of the decorrelating type and utilize fractional sampling to simultaneously achieve two goals: (1) the novel realization of a decorrelator with lower computational complexity and shorter processing latency; and (2) the significant reduction of the probability of error floor associated with time-varying fading. The analysis of the impact of imperfect power control on IS-95 multiple access interference is carried out first and the ineffectiveness of IS-95 power control in a mobile radio environment is demonstrated. Fractionally-spaced bit-by-bit decorrelator structures for the frequency-nonselective and frequency-selective channels are then proposed. The matrix singularity problem associated with decorrelation is also addressed, and its solution is suggested. A decorrelating receiver employing differentially coherent detection for an asynchronous CDMA, frequency-nonselective time-varying Rayleigh fading channel is proposed. A maximum likelihood detection principle is applied at the fractionally spaced decorrelator output, resulting in a significantly reduced error floor. For coherent detection, a novel single-stage and two-stage decision feedback (DF) maximum a posteriori (MAP) channel estimator is proposed. These estimators are applicable to a channel with an arbitrary spaced-time correlation function. The fractionally-spaced decorrelating detector is then modified and extended to a frequency-selective time-varying fading channel, and is shown to be capable of simultaneously eliminating MAI, ISI, and path cross-correlation interference. The implicit equivalent frequency diversity is exploited through multipath combining, and the effective time diversity is achieved by fractional sampling for significant performance improvement. The significance of the outcome of this research is in the design of new lower complexity multiuser detectors that do not exhibit the usual deficiencies and limitations associated with a time-varying fading and multipath CDMA mobile environment

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    MULTISAMPLING RECEIVERS FOR UNCODED AND CODED PSK SIGNAL SEQUENCES TRANSMITTED OVER RAYLEIGH FREQUENCY-FLAT FADING CHANNELS

    No full text
    An algorithm, based on previous work [Vitetta and Taylor 1994, 1995], for the detection of coded and uncoded PSK sequences transmitted on a frequency-flat fading channel is investigated. It is based on the Viterbi algorithm and processes more than one signal sample per signaling interval. Its performance is evaluated by means of computer simulations for both uncoded and coded systems
    corecore