565 research outputs found

    Safety-Aware Human-Robot Collaborative Transportation and Manipulation with Multiple MAVs

    Full text link
    Human-robot interaction will play an essential role in various industries and daily tasks, enabling robots to effectively collaborate with humans and reduce their physical workload. Most of the existing approaches for physical human-robot interaction focus on collaboration between a human and a single ground robot. In recent years, very little progress has been made in this research area when considering aerial robots, which offer increased versatility and mobility compared to their grounded counterparts. This paper proposes a novel approach for safe human-robot collaborative transportation and manipulation of a cable-suspended payload with multiple aerial robots. We leverage the proposed method to enable smooth and intuitive interaction between the transported objects and a human worker while considering safety constraints during operations by exploiting the redundancy of the internal transportation system. The key elements of our system are (a) a distributed payload external wrench estimator that does not rely on any force sensor; (b) a 6D admittance controller for human-aerial-robot collaborative transportation and manipulation; (c) a safety-aware controller that exploits the internal system redundancy to guarantee the execution of additional tasks devoted to preserving the human or robot safety without affecting the payload trajectory tracking or quality of interaction. We validate the approach through extensive simulation and real-world experiments. These include as well the robot team assisting the human in transporting and manipulating a load or the human helping the robot team navigate the environment. To the best of our knowledge, this work is the first to create an interactive and safety-aware approach for quadrotor teams that physically collaborate with a human operator during transportation and manipulation tasks.Comment: Guanrui Li and Xinyang Liu contributed equally to this pape

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Rule-Based Lloyd Algorithm for Multi-Robot Motion Planning and Control with Safety and Convergence Guarantees

    Full text link
    This paper presents a distributed rule-based Lloyd algorithm (RBL) for multi-robot motion planning and control. The main limitations of the basic Loyd-based algorithm (LB) concern deadlock issues and the failure to address dynamic constraints effectively. Our contribution is twofold. First, we show how RBL is able to provide safety and convergence to the goal region without relying on communication between robots, nor neighbors control inputs, nor synchronization between the robots. We considered both case of holonomic and non-holonomic robots with control inputs saturation. Second, we show that the Lloyd-based algorithm (without rules) can be successfully used as a safety layer for learning-based approaches, leading to non-negligible benefits. We further prove the soundness, reliability, and scalability of RBL through extensive simulations, an updated comparison with the state of the art, and experimental validations on small-scale car-like robots

    A field-based computing approach to sensing-driven clustering in robot swarms

    Get PDF
    Swarm intelligence leverages collective behaviours emerging from interaction and activity of several “simple” agents to solve problems in various environments. One problem of interest in large swarms featuring a variety of sub-goals is swarm clustering, where the individuals of a swarm are assigned or choose to belong to zero or more groups, also called clusters. In this work, we address the sensing-based swarm clustering problem, where clusters are defined based on both the values sensed from the environment and the spatial distribution of the values and the agents. Moreover, we address it in a setting characterised by decentralisation of computation and interaction, and dynamicity of values and mobility of agents. For the solution, we propose to use the field-based computing paradigm, where computation and interaction are expressed in terms of a functional manipulation of fields, distributed and evolving data structures mapping each individual of the system to values over time. We devise a solution to sensing-based swarm clustering leveraging multiple concurrent field computations with limited domain and evaluate the approach experimentally by means of simulations, showing that the programmed swarms form clusters that well reflect the underlying environmental phenomena dynamics

    Interleaving Allocation, Planning, and Scheduling for Heterogeneous Multi-Robot Coordination through Shared Constraints

    Get PDF
    In a wide variety of domains, such as warehouse automation, agriculture, defense, and assembly, effective coordination of heterogeneous multi-robot teams is needed to solve complex problems. Effective coordination is predicated on the ability to solve the four fundamentally intertwined questions of coordination: what (task planning), who (task allocation), when (scheduling), and how (motion planning). Owing to the complexity of these four questions and their interactions, existing approaches to multi-robot coordination have resorted to defining and solving problems that focus on a subset of the four questions. Notable examples include Task and Motion Planning (what and how), Multi-Agent Planning (what and who), and Multi-Agent Path Finding (who and how). In fact, a holistic problem formulation that fully integrates the four questions lies beyond the scope of prior literature. This dissertation focuses on examining the use of shared constraints on tasks and robots to interleave algorithms for task planning, task allocation, scheduling, and motion planning and investigating the hypothesis that a framework that interleaves algorithms to these four sub-problems will lead to solutions with lower makespans, greater computational efficiency, and the ability to solve larger problems. To support this claim, this dissertation contributes: (i) a novel temporal planner that interleaves task planning and scheduling layers, (ii) a trait-based time-extended task allocation framework that interleaves task allocation, scheduling, and motion planning, (iii) the formulation of holistic heterogeneous multi-robot coordination problem that simultaneously considers all four questions, (iv) a framework that interleaves layers for all four questions to solve this holistic heterogeneous multi-robot coordination problem, (v) a scheduling algorithm that reasons about temporal uncertainty, provides a theoretical guarantee on risk, and can be utilized within our framework, and (vi) a learning-based scheduling algorithm that reasons about deadlines and can be utilized within our framework.Ph.D

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    Apprenticeship Bootstrapping for Autonomous Aerial Shepherding of Ground Swarm

    Full text link
    Aerial shepherding of ground vehicles (ASGV) musters a group of uncrewed ground vehicles (UGVs) from the air using uncrewed aerial vehicles (UAVs). This inspiration enables robust uncrewed ground-air coordination where one or multiple UAVs effectively drive a group of UGVs towards a goal. Developing artificial intelligence (AI) agents for ASGV is a non-trivial task due to the sub-tasks, multiple skills, and their non-linear interaction required to synthesise a solution. One approach to developing AI agents is Imitation learning (IL), where humans demonstrate the task to the machine. However, gathering human data from complex tasks in human-swarm interaction (HSI) requires the human to perform the entire job, which could lead to unexpected errors caused by a lack of control skills and human workload due to the length and complexity of ASGV. We hypothesise that we can bootstrap the overall task by collecting human data from simpler sub-tasks to limit errors and workload for humans. Therefore, this thesis attempts to answer the primary research question of how to design IL algorithms for multiple agents. We propose a new learning scheme called Apprenticeship Bootstrapping (AB). In AB, the low-level behaviours of the shepherding agents are trained from human data using our proposed hierarchical IL algorithms. The high-level behaviours are then formed using a proposed gesture demonstration framework to collect human data from synthesising more complex controllers. The transferring mechanism is performed by aggregating the proposed IL algorithms. Experiments are designed using a mixed environment, where the UAV flies in a simulated robotic Gazebo environment, while the UGVs are physical vehicles in a natural environment. A system is designed to allow switching between humans controlling the UAVs using low-level actions and humans controlling the UAVs using high-level actions. The former enables data collection for developing autonomous agents for sub-tasks. At the same time, in the latter, humans control the UAV by issuing commands that call the autonomous agents for the sub-tasks. We baseline the learnt agents against Str\"{o}mbom scripted behaviours and show that the system can successfully generate autonomous behaviours for ASGV

    Olfactory Perceptual-Ability Assessment by Near-Infrared Spectroscopy using Vertical-Slice based Fuzzy Reasoning

    Get PDF
    The paper introduced a novel approach for automatic assessment of olfactory perceptual-ability of human-subjects using a functional Near Infrared Spectroscopy device. The assessment requires fuzzy functional mapping from spectroscopic measurement to perceptual-ability using Type-2 fuzzy reasoning. The novelty of the work lies in Vertical Slice Based General Type-2 Fuzzy Reasoning which employs fuzzy meet and union between the planes of type-2 measurement and observation spaces using the classical definition of t-norms and s-norms. The results of the meet and the union computation are later used as the Lower and Upper Firing Strength of the fired rule to determine the structure of the inference. Experiments undertaken confirm the efficacy of the proposed technique over traditional functional mapping, involving neural networks, regression analysis, and the like. The proposed technique of olfactory perceptual-ability can be directly employed to determine the thresholds for recognition-probability and discrimination-probability, when submitted to the subject in presence of aromatic noise. An analysis is undertaken to measure the computational overhead, which is found of the order of O(m.n) and run-time complexity of 94.78 ms, where m and n respectively represent discretizations in the vertical slice and features respectively. A statistical test undertaken confirms the superior performance of the proposed system with others at 95% confidence level
    corecore