22 research outputs found

    Coverage Technology of Autonomous Mobile Mapping Robots

    Get PDF
    The coverage technique is one of the essential applications of autonomous mobile mapping robots. There are various approaches for coverage depending on the model (model/non-model), robot systems (single/multi), and its purpose (patrol/cleaning). Coverage components include viewpoint generation and path planning approaches, which are described as CPP research work. Particularly, in surveillance systems, coverage techniques, such as spanning tree, cyclic coverage, and area-based coverage, are reviewed specifically, which can be expanded for multi-robot systems. In addition, required coverage techniques according to conditions for intelligent surveillance systems are summarized. Lastly, several issues on coverage, specifically cyclic coverage, are described and considered

    A survey on multi-robot coverage path planning for model reconstruction and mapping

    Get PDF
    There has been an increasing interest in researching, developing and deploying multi-robot systems. This has been driven mainly by: the maturity of the practical deployment of a single-robot system and its ability to solve some of the most challenging tasks. Coverage path planning (CPP) is one of the active research topics that could benefit greatly from multi-robot systems. In this paper, we surveyed the research topics related to multi-robot CPP for the purpose of mapping and model reconstructions. We classified the topics into: viewpoints generation approaches; coverage planning strategies; coordination and decision-making processes; communication mechanism and mapping approaches. This paper provides a detailed analysis and comparison of the recent research work in this area, and concludes with a critical analysis of the field, and future research perspectives

    The Lawn Mowing Problem: From Algebra to Algorithms

    Get PDF

    PPCPP: A Predator-Prey-Based Approach to Adaptive Coverage Path Planning

    Full text link
    © 2004-2012 IEEE. Most of the existing coverage path planning (CPP) algorithms do not have the capability of enabling a robot to handle unexpected changes in the coverage area of interest. Examples of unexpected changes include the sudden introduction of stationary or dynamic obstacles in the environment and change in the reachable area for coverage (e.g., due to imperfect base localization by an industrial robot). Thus, a novel adaptive CPP approach is developed that is efficient to respond to changes in real-time while aiming to achieve complete coverage with minimal cost. As part of the approach, a total reward function that incorporates three rewards is designed where the first reward is inspired by the predator-prey relation, the second reward is related to continuing motion in a straight direction, and the third reward is related to covering the boundary. The total reward function acts as a heuristic to guide the robot at each step. For a given map of an environment, model parameters are first tuned offline to minimize the path length while assuming no obstacles. It is shown that applying these learned parameters during real-time adaptive planning in the presence of obstacles will still result in a coverage path with a length close to the optimized path length. Many case studies with various scenarios are presented to validate the approach and to perform numerous comparisons

    Near-Optimal Coverage Path Planning with Turn Costs

    Full text link
    Coverage path planning is a fundamental challenge in robotics, with diverse applications in aerial surveillance, manufacturing, cleaning, inspection, agriculture, and more. The main objective is to devise a trajectory for an agent that efficiently covers a given area, while minimizing time or energy consumption. Existing practical approaches often lack a solid theoretical foundation, relying on purely heuristic methods, or overly abstracting the problem to a simple Traveling Salesman Problem in Grid Graphs. Moreover, the considered cost functions only rarely consider turn cost, prize-collecting variants for uneven cover demand, or arbitrary geometric regions. In this paper, we describe an array of systematic methods for handling arbitrary meshes derived from intricate, polygonal environments. This adaptation paves the way to compute efficient coverage paths with a robust theoretical foundation for real-world robotic applications. Through comprehensive evaluations, we demonstrate that the algorithm also exhibits low optimality gaps, while efficiently handling complex environments. Furthermore, we showcase its versatility in handling partial coverage and accommodating heterogeneous passage costs, offering the flexibility to trade off coverage quality and time efficiency

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Multi-Robot Path Planning for Persistent Monitoring in Stochastic and Adversarial Environments

    Get PDF
    In this thesis, we study multi-robot path planning problems for persistent monitoring tasks. The goal of such persistent monitoring tasks is to deploy a team of cooperating mobile robots in an environment to continually observe locations of interest in the environment. Robots patrol the environment in order to detect events arriving at the locations of the environment. The events stay at those locations for a certain amount of time before leaving and can only be detected if one of the robots visits the location of an event while the event is there. In order to detect all possible events arriving at a vertex, the maximum time spent by the robots between visits to that vertex should be less than the duration of the events arriving at that vertex. We consider the problem of finding the minimum number of robots to satisfy these revisit time constraints, also called latency constraints. The decision version of this problem is PSPACE-complete. We provide an O(log p) approximation algorithm for this problem where p is the ratio of the maximum and minimum latency constraints. We also present heuristic algorithms to solve the problem and show through simulations that a proposed orienteering-based heuristic algorithm gives better solutions than the approximation algorithm. We additionally provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. In case the event stay durations are not fixed but are drawn from a known distribution, we consider the problem of maximizing the expected number of detected events. We motivate randomized patrolling paths for such scenarios and use Markov chains to represent those random patrolling paths. We characterize the expected number of detected events as a function of the Markov chains used for patrolling and show that the objective function is submodular for randomly arriving events. We propose an approximation algorithm for the case where the event durations for all the vertices is a constant. We also propose a centralized and an online distributed algorithm to find the random patrolling policies for the robots. We also consider the case where the events are adversarial and can choose where and when to appear in order to maximize their chances of remaining undetected. The last problem we study in this thesis considers events triggered by a learning adversary. The adversary has a limited time to observe the patrolling policy before it decides when and where events should appear. We study the single robot version of this problem and model this problem as a multi-stage two player game. The adversary observes the patroller’s actions for a finite amount of time to learn the patroller’s strategy and then either chooses a location for the event to appear or reneges based on its confidence in the learned strategy. We characterize the expected payoffs for the players and propose a search algorithm to find a patrolling policy in such scenarios. We illustrate the trade off between hard to learn and hard to attack strategies through simulations

    Coverage and Time-optimal Motion Planning for Autonomous Vehicles

    Get PDF
    Autonomous vehicles are rapidly advancing with a variety of applications, such as area surveillance, environment mapping, and intelligent transportation. These applications require coverage and/or time-optimal motion planning, where the major challenges include uncertainties in the environment, motion constraints of vehicles, limited energy resources and potential failures. While dealing with these challenges in various capacities, this dissertation addresses three fundamental motion planning problems: (1) single-robot complete coverage in unknown environment, (2) multi-robot resilient and efficient coverage in unknown environment, and (3) time-optimal risk-aware motion planning for curvature-constrained vehicles. First, the ε* algorithm is developed for online coverage path planning in unknown environment using a single autonomous vehicle. It is computationally efficient, and can generate the desired back-and-forth path with less turns and overlappings. ε* prevents the local extrema problem, thus can guarantee complete coverage. Second, the CARE algorithm is developed which extends ε* for multi-robot resilient and efficient coverage in unknown environment. In case of failures, CARE guarantees complete coverage via dynamic task reallocations of other vehicles, hence provides resilience. Moreover, it reallocates idling vehicles to support others in their tasks, hence improves efficiency. Finally, the T* algorithm is developed to find the time-optimal risk-aware path for curvature-constrained vehicles. We present a novel risk function based on the concept of collision time, and integrate it with the time cost for optimization. The above-mentioned algorithms have been validated via simulations in complex scenarios and/or real experiments, and the results have shown clear advantages over existing popular approaches

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    corecore