7 research outputs found

    Energy Harvesting on New Jersey Roadways

    Get PDF
    NJDOT TO 361The project is to identify energy harvesting applications on roadways and bridges and conduct feasibility analysis and performance evaluation for large-scale and micro-scale energy generation. Solar energy harvesting can be achieved using different assets of roadway. The technical and economic feasibility of solar array in the right-of-way (ROW) was presented. Photovoltaic Noise Barriers (PVNBs) integrate solar panels with noise barriers to harvest solar energy while abating noise from the highway. The energy estimation models were first developed at project level and then used for state-level analysis, respectively, for top-mounted tilted, top-mounted bifacial, and shingles built-on designs of PVNB. On the other hand, piezoelectric energy harvesting can be achieved by compression or vibration modes. The new designs of vibration-based energy harvesters are proposed under multi-frequency bridge vibrations. A multiple degree-of-freedom (DOF) cantilever design concept was developed and tested in the laboratory. The optimized design was demonstrated and validated in full-scale tests for vibration-based energy harvesting. The research outcome provides recommendations for future implementation of energy harvesting in the roadway and bridge network of New Jersey for development of sustainable and smart transportation infrastructure

    Design, modeling, and analysis of piezoelectric energy harvesters

    Get PDF

    Review of the applications of principles of insect hearing to microscale acoustic engineering challenges

    Get PDF
    When looking for novel, simple, and energy-efficient solutions to engineering problems, nature has proved to be an incredibly valuable source of inspiration. The development of acoustic sensors has been a prolific field for bioinspired solutions. With a diverse array of evolutionary approaches to the problem of hearing at small scales (some widely different to the traditional concept of "ear"), insects in particular have served as a starting point for several designs. From locusts to moths, through crickets and mosquitoes among many others, the mechanisms found in nature to deal with small-scale acoustic detection and the engineering solutions they have inspired are reviewed. The present article is comprised of three main sections corresponding to the principal problems faced by insects, namely frequency discrimination, which is addressed by tonotopy, whether performed by a specific organ or directly on the tympana; directionality, with solutions including diverse adaptations to tympanal structure; and detection of weak signals, through what is known as active hearing. The three aforementioned problems concern tiny animals as much as human-manufactured microphones and have therefore been widely investigated. Even though bioinspired systems may not always provide perfect performance, they are sure to give us solutions with clever use of resources and minimal post-processing, being serious contenders for the best alternative depending on the requisites of the problem

    RĂ©colte d'Ă©nergie provenant des bus ARINC825 pour les applications en avionique

    Get PDF
    RÉSUMÉ Les avions modernes sont systématiquement équipés d’un certain nombre de systèmes qui demandent un grand nombre de capteurs pour leur fonctionnement optimal. Les câbles sont nécessaires pour procurer l’énergie et transmettre les données vers et à partir de ces capteurs. Le nombre croissant de capteurs demande encore plus de câbles. L’utilisation de plusieurs câbles entraîne plus de poids, d’espace et de complexité causant une consommation supplémentaire de carburant et donc plus d’émissions de CO2. Par conséquent, le câblage est l’une des principales difficultés dans les avions et l’industrie d’avionique explore des nouvelles techniques pour réduire le nombre des câbles pour construire des avions plus légers et plus économes en carburant. Nous nous intéressons dans ce mémoire à récolter de l’énergie dissipée par les lignes de données présentes dans les systèmes avioniques. L’énergie récoltée serait disposée pour alimenter les capteurs et actuateurs qui seront branchés sur ces lignes de données dans les avions. Cette récolte d’énergie se ferait par le biais d’interface intégré sur puce. L’approche de récolte énergétique proposée est basée sur le protocole d’échange de données par le bus ARINC 825 qui regroupe des périodes d’inactivité (inoccupé) mais maintient des niveaux de tension que nous récupérons comme une source d’alimentation par une chaîne de conversion de puissance. Cette interface de récolte d’énergie proposée comprend des circuits simples, un temps de stabilisation bas, une ondulation de tension réduite, une consommation d’énergie faible, une efficacité énergétique haute. Une conception au niveau de transistor est réalisée en technologie CMOSP 0.35 μm (AMS) 3.3 V/5 V et la performance du système est étudiée dans diverses conditions pour améliorer son efficacité. Ensuite, le système est intégré sur une puce qui a été fabriquée et testée. Les résultats expérimentaux consistent en une efficacité globale de 60%, une tension de sortie de 5.02 V, un temps de stabilisation de 3.6 ms et une ondulation de tension de 0.2 V. Le dispositif complété fournit une puissance de sortie de 10.08 mW pour l’alimentation des capteurs. Les résultats obtenus prouvent que l’interface proposée pourrait servir à alimenter des capteurs avioniques à partir de l’énergie récolté du bus ARINC 825.----------ABSTRACT Modern aircraft are systematically equipped with various systems that require a large number of sensors for their optimum operation. Cables are needed to provide power and transfer data to and from these sensors. The wired connection however, introduces complexity issues to the systems and it is also prone to damage due to wear. The growing numbers of sensors in aircrafts is associated with installation of even more cables. This leads to an enhanced weight of aerial-vehicle wiring and consequently, increased payload capacity, fuel consumption and CO2 emissions. As a result, cabling is one of the major challenges in aircraft and the avionics industry is exploring new techniques to reduce the number of cables to build lighter and more fuel-efficient aircraft. In this study, we are interested in harvesting the dissipated energy through data lines in avionic systems. The harvested energy can potentially be used for feeding the sensors and activators branching off the data lines in aircrafts. The implemented power harvesting approach is based on the data exchange protocol in ARINC 825 field (data) bus and consists of identifying the field bus idle periods are using their voltage level as the power source in the power conversion chain. This proposed energy harvesting interface features simple design of circuit components, short settling time and low-power consumption. A transistor-level design is carried out in CMOSP 0.35 μm (AMS) 3.3 V/5 V technology and the system performance is investigated under various conditions to improve its efficiency. The system is integrated on a microchip and it is fabricated. The experimental results consist of an overall efficiency of 60%, an output voltage of 5.02 V, a settling time of 3.6 ms and a voltage ripple of 0.2 V. Furthermore, the harvesting device provided an output power of 10.08 mW for feeding the sensors. The results proved that the proposed interface could serve as a powering unit of the avionic sensors through the harvested energy from ARINC 825 bus
    corecore