56 research outputs found

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore