380 research outputs found

    Fast Simulation of Skin Sliding

    Get PDF
    Skin sliding is the phenomenon of the skin moving over underlying layers of fat, muscle and bone. Due to the complex interconnections between these separate layers and their differing elasticity properties, it is difficult to model and expensive to compute. We present a novel method to simulate this phenomenon at real--time by remeshing the surface based on a parameter space resampling. In order to evaluate the surface parametrization, we borrow a technique from structural engineering known as the force density method which solves for an energy minimizing form with a sparse linear system. Our method creates a realistic approximation of skin sliding in real--time, reducing texture distortions in the region of the deformation. In addition it is flexible, simple to use, and can be incorporated into any animation pipeline

    Mesh modification using deformation gradients

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 117-131).Computer-generated character animation, where human or anthropomorphic characters are animated to tell a story, holds tremendous potential to enrich education, human communication, perception, and entertainment. However, current animation procedures rely on a time consuming and difficult process that requires both artistic talent and technical expertise. Despite the tremendous amount of artistry, skill, and time dedicated to the animation process, there are few techniques to help with reuse. Although individual aspects of animation are well explored, there is little work that extends beyond the boundaries of any one area. As a consequence, the same procedure must be followed for each new character without the opportunity to generalize or reuse technical components. This dissertation describes techniques that ease the animation process by offering opportunities for reuse and a more intuitive animation formulation. A differential specification of arbitrary deformation provides a general representation for adapting deformation to different shapes, computing semantic correspondence between two shapes, and extrapolating natural deformation from a finite set of examples.(cont.) Deformation transfer adds a general-purpose reuse mechanism to the animation pipeline by transferring any deformation of a source triangle mesh onto a different target mesh. The transfer system uses a correspondence algorithm to build a discrete many-to-many mapping between the source and target triangles that permits transfer between meshes of different topology. Results demonstrate retargeting both kinematic poses and non-rigid deformations, as well as transfer between characters of different topological and anatomical structure. Mesh-based inverse kinematics extends the idea of traditional skeleton-based inverse kinematics to meshes by allowing the user to pose a mesh via direct manipulation. The user indicates the dass of meaningful deformations by supplying examples that can be created automatically with deformation transfer, sculpted, scanned, or produced by any other means. This technique is distinguished from traditional animation methods since it avoids the expensive character setup stage. It is distinguished from existing mesh editing algorithms since the user retains the freedom to specify the class of meaningful deformations. Results demonstrate an intuitive interface for posing meshes that requires only a small amount of user effort.by Robert Walker Sumner.Ph.D

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    Research on generic interactive deformable 3D models: focus on the human inguinal region

    Get PDF
    The goal of this project is to research for real-time approximate methods of physicallybased animation in conjunction with static polygonal meshes with the aim of deforming them and simulating an elastic behaviour for these meshes. Because of this, in this project it has been developed a software suite capable of doing a lot of tasks, each one from different computer graphics research fields, conforming a versatile capability project
    corecore