299 research outputs found

    Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    Get PDF
    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments

    COMPARISON OF CONTOUR FEATURE BASED AND INTENSITY BASED INSAT-3D MET IMAGES COREGISTRATION FOR SUB PIXEL ACCURACIES

    Get PDF
    Image registration in meteorological images that are acquired continuously for their use in weather forecast activities and other related scientific analysis is a critical requirement. Meteorological images are obtained from geostationary orbits in visible, infrared, water vapor channels covering a large frame of several hundreds of kilometres of geographical extent which generally involve bi-directional scanning to cover larger extents. The acquired images have to be guaranteed for their geometric fidelity to a standard of choice among themselves by image registration. Registration of such images require to deal with low contrast, cloud and snow occlusions apart from navigation data uncertainties. Nevertheless, sub pixel accuracies are demanded for image analysis and geophysical parameters derivations. Feature based registration techniques are commonly used and intensity based techniques are also put to use in these contexts rarely. The proposed feature based approach uses a land water boundary data extraction with phase correlation of image blocks and proposed the intensity based approach tackles the same problem without any preprocessing step using a sampler-metric-transform-optimizer procedure. A comparison of these two approaches is pursued here in this article using various channel data sets of INSAT-3D satellite for sub pixel accuracie

    Registration of Multisensor Images through a Conditional Generative Adversarial Network and a Correlation-Type Similarity Measure

    Get PDF
    The automatic registration of multisensor remote sensing images is a highly challenging task due to the inherently different physical, statistical, and textural characteristics of the input data. Information-theoretic measures are often used to favor comparing local intensity distributions in the images. In this paper, a novel method based on the combination of a deep learning architecture and a correlation-type area-based functional is proposed for the registration of a multisensor pair of images, including an optical image and a synthetic aperture radar (SAR) image. The method makes use of a conditional generative adversarial network (cGAN) in order to address image-to-image translation across the optical and SAR data sources. Then, once the optical and SAR data are brought to a common domain, an area-based â„“2 similarity measure is used together with the COBYLA constrained maximization algorithm for registration purposes. While correlation-type functionals are usually ineffective in the application to multisensor registration, exploiting the image-to-image translation capabilities of cGAN architectures allows moving the complexity of the comparison to the domain adaptation step, thus enabling the use of a simple â„“2 similarity measure, favoring high computational efficiency, and opening the possibility to process a large amount of data at runtime. Experiments with multispectral and panchromatic optical data combined with SAR images suggest the effectiveness of this strategy and the capability of the proposed method to achieve more accurate registration as compared to state-of-the-art approaches

    Research Issues in Image Registration for Remote Sensing

    Get PDF
    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content

    Image similarity metrics suitable for infrared video stabilization during active wildfire monitoring : a comparative analysis

    Get PDF
    Aerial Thermal Infrared (TIR) imagery has demonstrated tremendous potential to monitor active forest fires and acquire detailed information about fire behavior. However, aerial video is usually unstable and requires inter-frame registration before further processing. Measurement of image misalignment is an essential operation for video stabilization. Misalignment can usually be estimated through image similarity, although image similarity metrics are also sensitive to other factors such as changes in the scene and lighting conditions. Therefore, this article presents a thorough analysis of image similarity measurement techniques useful for inter-frame registration in wildfire thermal video. Image similarity metrics most commonly and successfully employed in other fields were surveyed, adapted, benchmarked and compared. We investigated their response to different camera movement components as well as recording frequency and natural variations in fire, background and ambient conditions. The study was conducted in real video from six fire experimental scenarios, ranging from laboratory tests to large-scale controlled burns. Both Global and Local Sensitivity Analyses (GSA and LSA, respectively) were performed using state-of-the-art techniques. Based on the obtained results, two different similarity metrics are proposed to satisfy two different needs. A normalized version of Mutual Information is recommended as cost function during registration, whereas 2D correlation performed the best as quality control metric after registration. These results provide a sound basis for image alignment measurement and open the door to further developments in image registration, motion estimation and video stabilization for aerial monitoring of active wildland fires

    Image similarity metrics suitable for infrared video stabilization during active wildfire monitoring: a comparative analysis

    Get PDF
    Aerial Thermal Infrared (TIR) imagery has demonstrated tremendous potential to monitor active forest fires and acquire detailed information about fire behavior. However, aerial video is usually unstable and requires inter-frame registration before further processing. Measurement of image misalignment is an essential operation for video stabilization. Misalignment can usually be estimated through image similarity, although image similarity metrics are also sensitive to other factors such as changes in the scene and lighting conditions. Therefore, this article presents a thorough analysis of image similarity measurement techniques useful for inter-frame registration in wildfire thermal video. Image similarity metrics most commonly and successfully employed in other fields were surveyed, adapted, benchmarked and compared. We investigated their response to different camera movement components as well as recording frequency and natural variations in fire, background and ambient conditions. The study was conducted in real video from six fire experimental scenarios, ranging from laboratory tests to large-scale controlled burns. Both Global and Local Sensitivity Analyses (GSA and LSA, respectively) were performed using state-of-the-art techniques. Based on the obtained results, two different similarity metrics are proposed to satisfy two different needs. A normalized version of Mutual Information is recommended as cost function during registration, whereas 2D correlation performed the best as quality control metric after registration.Peer ReviewedPostprint (published version

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images
    • …
    corecore