481 research outputs found

    A Novel Algorithm for Ship Detection in SAR Imagery Based on the Wavelet Transform

    Get PDF
    Carrying out an effective control of fishing activities is essential to guarantee a sustainable exploitation of sea resources. Nevertheless, as the regulated areas are extended, they are difficult and time consuming to monitor by means of traditional reconnaissance methods such as planes and patrol vessels. On the contrary, satellite-based synthetic aperture radar (SAR) provides a powerful surveillance capability allowing the observation of broad expanses, independently from weather effects and from the day and night cycle. Unfortunately, the automatic interpretation of SAR images is often complicated, even though undetected targets are sometimes visible by eye. Attending to these particular circumstances, a novel approach for ship detection is proposed based on the analysis of SAR images by means of the discrete wavelet transform. The exposed method takes advantage of the difference of statistical behavior among the ships and the surrounding sea, interpreting the information through the wavelet coefficients in order to provide a more reliable detection. The analysis of the detection performance over both simulated and real images confirms the robustness of the proposed algorithm.Peer Reviewe

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 903-94-C6071Maryland Procurement Office Contract MDA 904-93-C4169U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0028U.S. Army Research Office Grant DAAH04-95-1-0494U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0505U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    LW-CMDANet:a novel attention network for SAR automatic target recognition

    Get PDF

    Dynamic Denoising of Tracking Sequences

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.920795In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences.Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement "collaborate" in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over "static" approaches, in which the tracking images are enhanced independently of each other

    ERS SAR imagery for urban climate studies

    Get PDF
    International audienceThis study investigates the potentialities of ERS SAR imagery for the urban micro-climate and air quality, over the city of Nantes, France. The temporal variability of the SAR signal over the city has been assessed by analyzing five images in descending mode. Beside the speckle effect, the quality of the signal is highly variable from one image to the other. Meteorological effects. make contrasts between objects and their surroundings to be more or less pronounced. Urban features are mostly present in each image, but the structures are not always well perceived within a single image. It is concluded that it is necessary to have several images. Their redundancy allows a better exploitation of the urban features. Further it decreases the level of speckle. Screening of the average SAR image clearly indicates that the perception of the roads is highly dependent on the flight direction of the spacecraft. The main factors for the perception of the morphological features are the height of the buildings, its orientation relative to the spacecraft orbit, its horizontal surface, its materials. Multiresolution analysis, by means of wavelet transform or structure function, provides a good discrimination between unbuilt areas, residential areas, industrial areas, and large groups of buildings. This preliminary study has demonstrated that urban morphological features and their typologies with relation to the air flow drag were well-perceived in SAR imagery once properly processed. Further studies are required to assess definitely the benefits and the limits of such images in urban micro-climate and air quality

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 903-94-C6071Maryland Procurement Office Contract MDA 904-93-C4169U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0028U.S. Army Research Office Grant DAAHO4-95-1-0494U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126U.S. Army Research Office Grant DAAHO4-93-G-018
    • …
    corecore