448 research outputs found

    Efficient Analysis of Ferrite Loaded Waveguides Using the MRFD Method

    Get PDF
    A full wave two-dimensional Multiresolution Frequency Domain formulation for efficient analysis of the dispersion characteristics of ferrite loaded waveguide structures is developed and presented. It has been concluded that the proposed formulation, which takes advantage of the compactly supported wavelet bases to expand electric and magnetic fields, allows coarser discretization compared to conventional Finite Difference Frequency Domain (FDFD) scheme. The efficiency and accuracy of the newly developed formulation, in comparison to FDFD method, is demonstrated by solving the dispersion characteristics of fully and partially ferrite loaded waveguide structures

    Wavelets and electromagnetics

    Get PDF
    Wavelets are an exciting new topic in applied mathematics and signal processing. This paper will provide a brief review of wavelets which are also known as families of functions with an emphasis on interpretation rather than rigor. We will derive an indirect use of wavelets for the solution of integral equations based techniques adapted from image processing. Examples for resistive strips will be given illustrating the effect of these techniques as well as their promise in reducing dramatically the requirement in order to solve an integral equation for large bodies. We also will present a direct implementation of wavelets to solve an integral equation. Both methods suggest future research topics and may hold promise for a variety of uses in computational electromagnetics

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Development of 3D electromagnetic modeling tools for airborne vehicles

    Get PDF
    The main goal of this report is to advance the development of methodologies for scattering by airborne composite vehicles. Although the primary focus continues to be the development of a general purpose computer code for analyzing the entire structure as a single unit, a number of other tasks are also being pursued in parallel with this effort. One of these tasks discussed within is on new finite element formulations and mesh termination schemes. The goal here is to decrease computation time while retaining accuracy and geometric adaptability.The second task focuses on the application of wavelets to electromagnetics. Wavelet transformations are shown to be able to reduce a full matrix to a band matrix, thereby reducing the solutions memory requirements. Included within this document are two separate papers on finite element formulations and wavelets

    Generalized Debye Sources Based EFIE Solver on Subdivision Surfaces

    Get PDF
    The electric field integral equation is a well known workhorse for obtaining fields scattered by a perfect electric conducting (PEC) object. As a result, the nuances and challenges of solving this equation have been examined for a while. Two recent papers motivate the effort presented in this paper. Unlike traditional work that uses equivalent currents defined on surfaces, recent research proposes a technique that results in well conditioned systems by employing generalized Debye sources (GDS) as unknowns. In a complementary effort, some of us developed a method that exploits the same representation for both the geometry (subdivision surface representations) and functions defined on the geometry, also known as isogeometric analysis (IGA). The challenge in generalizing GDS method to a discretized geometry is the complexity of the intermediate operators. However, thanks to our earlier work on subdivision surfaces, the additional smoothness of geometric representation permits discretizing these intermediate operations. In this paper, we employ both ideas to present a well conditioned GDS-EFIE. Here, the intermediate surface Laplacian is well discretized by using subdivision basis. Likewise, using subdivision basis to represent the sources, results in an efficient and accurate IGA framework. Numerous results are presented to demonstrate the efficacy of the approach
    corecore