145 research outputs found

    High-order Relaxed Multirate Infinitesimal Step Methods for Multiphysics Applications

    Get PDF
    In this work, we consider numerical methods for integrating multirate ordinary differential equations. We are interested in the development of new multirate methods with good stability properties and improved efficiency over existing methods. We discuss the development of multirate methods, particularly focusing on those that are based on Runge-Kutta theory. We introduce the theory of Generalized Additive Runge-Kutta methods proposed by Sandu and GĂĽnther. We also introduce the theory of Recursive Flux Splitting Multirate Methods with Sub-cycling described by Schlegel, as well as the Multirate Infinitesimal Step methods this work is based on. We propose a generic structure called Flexible Multirate Generalized-Structure Additively-Partitioned Runge-Kutta methods which allows for optimization and more rigorous analysis. We also propose a specific class of higher-order methods, called Relaxed Multirate Infinitesimal Step Methods. We will leverage GARK theories to develop new theory about the stability and accuracy of these new methods

    Implicit-explicit multirate infinitesimal GARK methods

    Full text link
    This work focuses on the development of a new class of high-order accurate methods for multirate time integration of systems of ordinary differential equations. Unlike other recent work in this area, the proposed methods support mixed implicit-explicit (IMEX) treatment of the slow time scale. In addition to allowing this slow time scale flexibility, the proposed methods utilize a so-called `infinitesimal' formulation for the fast time scale through definition of a sequence of modified `fast' initial-value problems, that may be solved using any viable algorithm. We name the proposed class as implicit-explicit multirate infinitesimal generalized-structure additive Runge--Kutta (IMEX-MRI-GARK) methods. In addition to defining these methods, we prove that they may be viewed as specific instances of generalized-structure additive Runge--Kutta (GARK) methods, and derive a set of order conditions on the IMEX-MRI-GARK coefficients to guarantee both third and fourth order accuracy for the overall multirate method. Additionally, we provide three specific IMEX-MRI-GARK methods, two of order three and one of order four. We conclude with numerical simulations on two multirate test problems, demonstrating the methods' predicted convergence rates and comparing their efficiency against both legacy IMEX multirate schemes and recent third and fourth order implicit MRI-GARK methods

    Extended multirate infinitesimal step methods: Derivation of order conditions

    Get PDF
    Multirate methods are specially designed for problems with multiple time scales. The multirate infinitesimal step method (MIS) was developed as a generalization of the so called split-explicit Runge–Kutta methods, where the integration of the fast part is conducted analytically. The MIS method was originally evolved for applications related to numerical weather prediction, i.e. the integration of the compressible Euler equation. In this work, an extension to MIS methods will be presented where an arbitrary Runge–Kutta method (RK) is applied for the integration of the fast component. Furthermore, the order convergence from the original MIS method will be reinvestigated including the derivation of conditions up to order four. Additionally will be presented how well-known methods such as recursive flux splitting multirate method, (Schlegel et al., 2012) partitioned Runge–Kutta method, (Jackiewicz and Vermiglio, 2000) and generalized additive Runge–Kutta method, (Sandu and Günther, 2015) are related to or can be cast as an extended MIS method. An exemplary MIS method of order four with five stages will show that the convergence behaviour not only depends on the applied method for the integration of the fast component. The method will further indicate that the used fast time step plays a significant role. © 2019 The Author(s

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory
    • …
    corecore