235 research outputs found

    Multirate input based quasi-sliding mode control for permanent magnet synchronous motor

    Get PDF
    Permanent magnet synchronous motor field oriented control system often uses dual-loop (speed and current) cascade structure, and the dynamics speeds of the two loops mismatch. The motor’s mechanical and electrical subsystems have the typical multirate characteristics. Based on the multirate control theory, this paper proposes multirate input quasi-sliding mode algorithm for the speed control loop. Under the situation of the output data loss, the proposed algorithm builds the extended input vector with the output prediction information. Due to the extended input vector, the proposed algorithm reduces the system steady state chatterring, and then improves the performance of the whole system. Simulation and experimental results demonstrate the effectiveness of the proposed algorithm

    Hierarchical Model Predictive/Sliding Mode control of nonlinear constrained uncertain systems

    Get PDF
    This paper presents an overview of some hierarchical control schemes composed by a high level Model Predictive Control (MPC) and a low level Sliding Mode Control (SMC). The latter is realized by using the so-called Integral Sliding Mode (ISM) control approach and is meant to reject the matched disturbances affecting the plant, thus providing a system with reduced uncertainty for the MPC design. Both continuous and discrete-time solutions are discussed in the paper. Moreover, assuming the presence of a network in the control loop, a networked version of the control scheme is presented. It is a model-based event-triggered MPC/ISM control scheme aimed at minimizing the packets transmission. The input-to-state (practical) stability properties of the proposed approaches are also addressed in the paper

    HIGH-BANDWIDTH IDENTIFICATION AND COMPENSATION OF HYSTERETIC DYNAMICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Procjena varijabli stanja sustava s gorivnim člankom i uzlaznim pretvaračem metodom brzog uzorkovanja signala

    Get PDF
    Estimation of state variables of a peak current mode (PCM) controlled DC-DC boost converter supplied by a PEM fuel cell is described in this paper. Since this system is highly nonlinear and non-minimum phase, its state variables are estimated by using fast output sampling method. Estimated state variables are the converter output voltage and its first derivative, and they are suitable for model reference adaptive control or sliding mode based control techniques. The estimator has been designed in a way that it gives a good estimate of the state variables in the continuous and in the discontinuous conduction mode of the converter, and in the presence of measurement and process noise caused by converter switching-mode operation. Experimental results of estimating the state variables on a 450 W boost converter supplied by the emulator of the PEM fuel cell BCS 64-32 show good results of the estimation, regardless of the conduction mode of the converter, i.e. the operating point determined by its output current.U ovom radu obrađena je procjena varijabli stanja sustava s istomjernim uzlaznim pretvaračem u vršnom strujnom načinu upravljanja napajanim PEM gorivnim člankom. Budući da je taj sustav izrazito nelinearan te neminimalno-fazan, za procjenu njegovih varijabli stanja upotrebljena je metoda brzog uzorkovanja izlaznog signala. Procjenjene varijable stanja su izlazni napon uzlaznog pretvarača te njegova prva derivacija, te su pogodne za adaptivno upravljanje s referentnim modelom i upravljanje temeljeno na kliznim režimima. Procjenitelj je projektiran na način da daje dobru procjenu varijabli stanja u kontinuiranom i diskontinuiranom režimu rada pretvarača, te u uvjetima mjernog i procesnog šuma uzrokovanog sklopnim načinom rada pretvarača. Eksperimentalni rezultati procjene varijabli stanja na uzlaznom pretvaraču snage 450 W napajanim emulatorom gorivnog članka BCS 64-32 pokazuju dobre rezultate procjene, neovisno o režimu rada pretvarača, odnosno radnoj točki određenoj njegovom izlaznom strujom

    Discrete‐Time Sliding Mode Control with Outputs of Relative Degree More than One

    Get PDF
    This work deals with sliding mode control of discrete‐time systems where the outputs are defined or chosen to be of relative degrees more than one. The analysis brings forward important advancements in the direction of discrete‐time sliding mode control, such as improved robustness and performance of the system. It is proved that the ultimate band about the sliding surface could be greatly reduced by the choice of higher relative degree outputs, thus increasing the robustness of the system. Moreover, finite‐time stability in absence of uncertainties is proved for such a choice of higher relative degree output. In presence of uncertainties, the system states become finite time ultimately bounded in nature. The work presents in some detail the case with relative degree two outputs, deducing switching and non‐switching reaching laws for the same, while for arbitrary relative degree outputs, it shows a general formalisation of a control structure specific for a certain type of linear systems

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty
    corecore