1,399 research outputs found

    Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques

    Get PDF
    This paper presents a parallel rendering approach that allows high-quality visualization of large time-varying volume datasets. Multiresolution and adaptive-resolution techniques are also incorporated to improve the efficiency of the rendering. Three basic steps are needed to implement this kind of an application. First we divide the task through decomposition of data. This decomposition can be either temporal or spatial or a mix of both. After data has been divided, each of the data portions is rendered by a separate processor to create sub-images or frames. Finally these sub-images or frames are assembled together into a final image or animation. After developing this application, several experiments were performed to show that this approach indeed saves time when a reasonable number of processors are used. Also, we conclude that the optimal number of processors is dependent on the size of the dataset used

    CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

    Get PDF
    Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto PolitƩcnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; MƤlardalen Real-Time Research Centre (MRTC) at MƤlardalen University in VƤsterƄs; Q-Systems

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    Parallel software caches

    Get PDF
    We investigate the construction and application of parallel software caches in shared memory multiprocessors. In contrast to maintaining a private cache for each thread, a parallel cache allows the re-use of results of lengthy computations by other threads. This is especially important in irregular applications where the re-use of intermediate results by scheduling is not possible. Example applications are the computation of intersections between a scanline and a polygon in computational geometry, and the computation of intersections between rays and objects in ray tracing. A parallel software cache is based on a readers/writers lock, i.e. as long as no thread alters the cache data structure, multiple threads may read simultaneously. If a thread wants to alter the cache because of a cache miss, it waits until all other threads have left the data structure, then it can update the contents of the cache. Other threads can access the cache only after the writer has finished its work. To increase utilization, the cache has a number of slots that can be locked separately. We investigate the tradeoff between slot size, search time in the cache, and the time to re-compute a cache entry. Another major difference between sequential and parallel software caches is the replacement strategy. We adapt classic replacement strategies such as LRU and random replacement for parallel caches. As execution platform, we use the SB-PRAM, but the concepts might be portable to machines such as NYU Ultracomputer, Tera MTA, and Stanford DASH

    FASTER: Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration

    Get PDF
    The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) EU FP7 project, aims to ease the design and implementation of dynamically changing hardware systems. Our motivation stems from the promise reconfigurable systems hold for achieving high performance and extending product functionality and lifetime via the addition of new features that operate at hardware speed. However, designing a changing hardware system is both challenging and time-consuming. FASTER facilitates the use of reconfigurable technology by providing a complete methodology enabling designers to easily specify, analyze, implement and verify applications on platforms with general-purpose processors and acceleration modules implemented in the latest reconfigurable technology. Our tool-chain supports both coarse- and fine-grain FPGA reconfiguration, while during execution a flexible run-time system manages the reconfigurable resources. We target three applications from different domains. We explore the way each application benefits from reconfiguration, and then we asses them and the FASTER tools, in terms of performance, area consumption and accuracy of analysis

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationRay tracing is becoming more widely adopted in offline rendering systems due to its natural support for high quality lighting. Since quality is also a concern in most real time systems, we believe ray tracing would be a welcome change in the real time world, but is avoided due to insufficient performance. Since power consumption is one of the primary factors limiting the increase of processor performance, it must be addressed as a foremost concern in any future ray tracing system designs. This will require cooperating advances in both algorithms and architecture. In this dissertation I study ray tracing system designs from a data movement perspective, targeting the various memory resources that are the primary consumer of power on a modern processor. The result is high performance, low energy ray tracing architectures

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given
    • ā€¦
    corecore