846 research outputs found

    USAge of Groupware in Software Engineering Education at the Cscw Laboratory of University Duisburg-essen: Possibilities and Limitations

    Full text link
    This paper analyzes the application level in CSCW laboratory there are Electronic meeting rooms, Video Conferencing, Desktop Conference (Passenger), and BSCW system which conducting in The University Duisburg – Essen Germany. This analysis included short analysis and discussion about possibilities and limitation of each experiment followed by outlook how this lab can be further developed.Multi-user to Multipoint Videoconferences is introduced to cover all of devices join to the conferences. A computer network, PSTN (Public Switched Telephone Network), ISDN Phone, Wireless Infrastructures (accessed by laptop, smart phone, PDA) and videoconferences systems is proposed to be integrate

    Throughput and Fairness Considerations in Overlay Networks for Content Distribution

    Get PDF
    The Internet has been designed as a best-effort network, which does not provide any additional services to applications using the network. Overlay networks, which form an application layer network on top of the underlying Internet, have emerged as popular means to provide specific services and greater control to applications. Overlay networks offer a wide range of services, including content distribution, multicast and multimedia streaming. In my thesis, I focus on overlay networks for content distribution, used by applications such as bulk data transfer, file sharing and web retrieval. I first investigate the construction of such overlay networks by studying the bootstrapping functionality in an example network (the Gnutella peer-to-peer system). This study comprises the analysis and performance measurements of Gnutella servents and measurement of the GWebCache system that helps new peers find existing peers on the Gnutella network. Next, I look at fairness issues due to the retrieval of data at a client in the form of multipoint-to-point sessions, formed due to the use of content distribution networks. A multipoint-to-point session comprises multiple connections from multiple servers to a single client over multiple paths, initiated to retrieve a single application-level object. I investigate fairness of rate allocation from a session point of view, and propose fairness definitions and algorithms to achieve these definitions. Finally, I consider the problem of designing an overlay network for content distribution, which is fair to competing overlay networks, while maximizing the total end-to-end throughput of the data it carries. As a first step, I investigate this design problem for a single path in an Overlay-TCP network. I propose two schemes that dynamically provision the number of TCP connections on each hop of an Overlay-TCP path to maximize the end-to-end throughput using few extraneous connections. Next, I design an Overlay-TCP network, with the secondary goal of intra-overlay network fairness. I propose four schemes for deciding the number of TCP connections to be used on each overlay hop. I show that one can vary the proportion of sharing between competing overlay networks by varying the maximum number of connections allowed on overlay hops in each competing network.Ph.D.Committee Co-Chair: Ammar, Mostafa; Committee Co-Chair: Zegura, Ellen; Committee Member: Dovrolis, Constantinos; Committee Member: Rabinovich, Misha; Committee Member: Riley, Georg

    A study of QoS support for real time multimedia communication over IEEE802.11 WLAN : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Systems Engineering, Massey University, Albany, New Zealand

    Get PDF
    Quality of Service (QoS) is becoming a key problem for Real Time (RT) traffic transmitted over Wireless Local Area Network (WLAN). In this project the recent proposals for enhanced QoS performance for RT multimedia is evaluated and analyzed. Two simulation models for EDCF and HCF protocols are explored using OPNET and NS-2 simulation packages respectively. From the results of the simulation, we have studied the limitations of the 802.1 le standard for RT multimedia communication and analysed the reasons of the limitations happened and proposed the solutions for improvement. Since RT multimedia communication encompasses time-sensitive traffic, the measure of quality of service generally is minimal delay (latency) and delay variation (jitter). 802.11 WLAN standard focuses on the PHY layer and the MAC layer. The transmitted data rate on PHY layer are increased on standards 802.1 lb, a, g, j, n by different code mapping technologies while 802.1 le is developed specially for the QoS performance of RT-traffics at the MAC layer. Enhancing the MAC layer protocols are the significant topic for guaranteeing the QoS performance of RT-traffics. The original MAC protocols of 802.11 are DCF (Distributed Coordination Function) and PCF (Point Coordinator Function). They cannot achieve the required QoS performance for the RT-traffic transmission. IEEE802.lle draft has developed EDCF and HCF instead. Simulation results of EDCF and HCF models that we explored by OPNET and NS-2, show that minimal latency and jitter can be achieved. However, the limitations of EDCF and HCF are identified from the simulation results. EDCF is not stable under the high network loading. The channel utilization is low by both protocols. Furthermore, the fairness index is very poor by the HCF. It means the low priority traffic should starve in the WLAN network. All these limitations are due to the priority mechanism of the protocols. We propose a future work to develop dynamic self-adaptive 802.11c protocol as practical research directions. Because of the uncertainly in the EDCF in the heavy loading, we can add some parameters to the traffic loading and channel condition efficiently. We provide indications for adding some parameters to increase the EDCF performance and channel utilization. Because all the limitations are due to the priority mechanism, the other direction is doing away with the priority rule for reasonable bandwidth allocation. We have established that the channel utilization can be increased and collision time can be reduced for RT-traffics over the EDCF protocol. These parameters can include loading rate, collision rate and total throughput saturation. Further simulation should look for optimum values for the parameters. Because of the huge polling-induced overheads, HCF has the unsatisfied tradeoff. This leads to poor fairness and poor throughput. By developing enhanced HCF it may be possible to enhance the RI polling interval and TXOP allocation mechanism to get better fairness index and channel utilization. From the simulation, we noticed that the traffics deployment could affect the total QoS performance, an indication to explore whether the classification of traffics deployments to different categories is a good idea. With different load-based traffic categories, QoS may be enhanced by appropriate bandwidth allocation Strategy

    Improved capacity and fairness of massive machine type communications in millimetre wave 5G network

    Get PDF
    In the Fifth Generation (5G) wireless standard, the Internet of Things (IoT) will interconnect billions of Machine Type Communications (MTC) devices. Fixed and mobile wearable devices and sensors are expected to contribute to the majority of IoT traffic. MTC device mobility has been considered with three speeds, namely zero (fixed) and medium and high speeds of 30 and 100 kmph. Different values for device mobility are used to simulate the impact of device mobility on MTC traffic. This work demonstrates the gain of using distributed antennas on MTC traffic in terms of spectral efficiency and fairness among MTC devices, which affects the number of devices that can be successfully connected. The mutual use of Distributed Base Stations (DBS) with Remote Radio Units (RRU) and the adoption of the millimetre wave band, particularly in the 26 GHz range, have been considered the key enabling technologies for addressing MTC traffic growth. An algorithm has been set to schedule this type of traffic and to show whether MTC devices completed their traffic upload or failed to reach the margin. The gains of the new architecture have been demonstrated in terms of spectral efficiency, data throughput and the fairness index

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Congestion Control for Layered Multicast Transmission

    Full text link
    peer reviewedHeterogeneity of receivers makes it hard to control congestion for multicast transmission. Using hierarchical layering of the information is one of the most elegant and efficient approach to tackle this problem. The proposed algorithm is based on this principle and has three objectives: to fulfill intra-session fairness, i.e. between different receivers of the same session; to be fair towards TCP; to fulfill inter-session fairness, i.e. same throughputs (and not number of layers) to concurrent sessions
    • …
    corecore