1,011 research outputs found

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Technology (Hons) (Information System)

    Get PDF
    Up until recently the whole area of video conferencing has proved to be an expensive and tricky technology to be working with. Most of the video conferencing technologies can be found in a large room video conferencing system with sophisticated and expensive conferencing equipments. And in other hand, teaching and learning process is still limited by physical boundaries. The main idea of this project is to improve communication and correlation among students, lecturers and tutors. The methodology chosen for the development of this project is Prototyping system development methodology. It consists of Requirement Analysis, Design Prototype, Evaluate Prototype and Project completion. In Requirement Analysis Phase, the requirements of the application and the functional specification are determined followed by Design Prototype Phase where all the critical part of this project is developed. These include the Graphical User Interface (GUI) development and the coding of this application. The third phase is Evaluate Prototype Phase where the testing phase took place. Each subcomponent is tested to make sure it met all requirements. Once all components of the application is tested and all requirements are satisfied, the last phase, that is Project Completion Phase are considered completed whereby final documentation are to be developed before the final presentation. As a conclusion, this project aims to improve current communication style. It consumes communication technology effectively whereby the processing power of desktop computers has almost reached a level to become comfortable with processing the multimedia data. In addition, advances in the bandwidth availability on the internet and on LAN's/ WAN's has given the networks the ability to handle the real time streaming media data

    FAST ROTATED BOUNDING BOX ANNOTATIONS FOR OBJECT DETECTION

    Get PDF
    Traditionally, object detection models use a large amount of annotated data and axis-aligned bounding boxes (AABBs) are often chosen as the image annotation technique for both training and predictions. The purpose of annotating the objects in the images is to indicate the regions of interest with the corresponding labels. Accurate object annotations help the computer vision models to understand the distinct patterns of the image features to recognize and localize different classes of objects. However, AABBs are often a poor fit for elongated object instances. It’s also challenging to localize objects with AABBs in densely packed aerial images because of overlapping adjacent bounding boxes. Alternatively, using rectangular annotations that can be oriented diagonally, also known as rotated bounding boxes (RBB), can provide a much tighter fit for elongated objects and reduce the potential bounding box overlap between adjacent objects. However, RBBs are much more time-consuming and tedious to annotate than AABBs for large datasets. In this work, we propose a novel annotation tool named as FastRoLabelImg (Fast Rotated LabelImg) for producing high-quality RBB annotations with low time and effort. The tool generates accurate RBB proposals for objects of interest as the annotator makes progress through the dataset. It can also adapt available AABBs to generate RBB proposals. Furthermore, a multipoint box drawing system is provided to reduce manual RBB annotation time compared to the existing methods. Across three diverse datasets, we show that the proposal generation methods can achieve a maximum of 88.9% manual workload reduction. We also show that our proposed manual annotation method is twice as fast as the existing system with the same accuracy by conducting a participant study. Lastly, we publish the RBB annotations for two public datasets in order to motivate future research that will contribute in developing more competent object detection algorithms capable of RBB predictions

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Data prediction for cases of incorrect data in multi-node electrocardiogram monitoring

    Get PDF
    The development of a mesh topology in multi-node electrocardiogram (ECG) monitoring based on the ZigBee protocol still has limitations. When more than one active ECG node sends a data stream, there will be incorrect data or damage due to a failure of synchronization. The incorrect data will affect signal interpretation. Therefore, a mechanism is needed to correct or predict the damaged data. In this study, the method of expectation-maximization (EM) and regression imputation (RI) was proposed to overcome these problems. Real data from previous studies are the main modalities used in this study. The ECG signal data that has been predicted is then compared with the actual ECG data stored in the main controller memory. Root mean square error (RMSE) is calculated to measure system performance. The simulation was performed on 13 ECG waves, each of them has 1000 samples. The simulation results show that the EM method has a lower predictive error value than the RI method. The average RMSE for the EM and RI methods is 4.77 and 6.63, respectively. The proposed method is expected to be used in the case of multi-node ECG monitoring, especially in the ZigBee application to minimize errors
    • …
    corecore