31 research outputs found

    Discrete wavelet transform realisation using run-time reconfiguration of field programmable gate array (FPGA)s

    Get PDF
    Abstract: Designing a universal embedded hardware architecture for discrete wavelet transform is a challenging problem because of the diversity among wavelet kernel filters. In this work, the authors present three different hardware architectures for implementing multiple wavelet kernels. The first scheme utilises fixed, parallel hardware for all the required wavelet kernels, whereas the second scheme employs a processing element (PE)-based datapath that can be configured for multiple wavelet filters during run-time. The third scheme makes use of partial run-time configuration of FPGA units for dynamically programming any desired wavelet filter. As a case study, the authors present FPGA synthesis results for simultaneous implementation of six different wavelets for the proposed methods. Performance analysis and comparison of area, timing and power results are presented for the Virtex-II Pro FPGA implementations

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals

    Depth-first search embedded wavelet algorithm for hardware implementation

    Get PDF
    The emerging technology of image communication over wireless transmission channels requires several new challenges to be simultaneously met at the algorithm and architecture levels. At the algorithm level, desirable features include high coding performance, bit stream scalability, robustness to transmission errors and suitability for content-based coding schemes. At the architecture level, we require efficient architectures for construction of portable devices with small size and low power consumption. An important question is to ask if a single coding algorithm can be designed to meet the diverse requirements. Recently, researchers working on improving different features have converged on a set of coding schemes commonly known as embedded wavelet algorithms. Currently, these algorithms enjoy the highest coding performances reported in the literature. In addition, embedded wavelet algorithms have the natural feature of being able to meet a target bit rate precisely. Furthermore work on improving the algorithm robustness has shown much promise. The potential of embedded wavelet techniques has been acknowledged by its inclusion in the new JPEG2000 and MPEG-4 image and video coding standards

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    A custom computing framework for orientation and photogrammetry

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 211-223).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.There is great demand today for real-time computer vision systems, with applications including image enhancement, target detection and surveillance, autonomous navigation, and scene reconstruction. These operations generally require extensive computing power; when multiple conventional processors and custom gate arrays are inappropriate, due to either excessive cost or risk, a class of devices known as Field-Programmable Gate Arrays (FPGAs) can be employed. FPGAs per the flexibility of a programmable solution and nearly the performance of a custom gate array. When implementing a custom algorithm in an FPGA, one must be more efficient than with a gate array technology. By tailoring the algorithms, architectures, and precisions, the gate count of an algorithm may be sufficiently reduced to t into an FPGA. The challenge is to perform this customization of the algorithm, while still maintaining the required performance. The techniques required to perform algorithmic optimization for FPGAs are scattered across many fields; what is currently lacking is a framework for utilizing all these well known and developing techniques. The purpose of this thesis is to develop this framework for orientation and photogrammetry systems.by Paul D. Fiore.Ph.D
    corecore