22 research outputs found

    Optimization and Applications

    Get PDF
    [no abstract available

    Non-Smooth Optimization by Abs-Linearization in Reflexive Function Spaces

    Get PDF
    Nichtglatte Optimierungsprobleme in reflexiven Banachräumen treten in vielen Anwendungen auf. Häufig wird angenommen, dass alle vorkommenden Nichtdifferenzierbarkeiten durch Lipschitz-stetige Operatoren wie abs, min und max gegeben sind. Bei solchen Problemen kann es sich zum Beispiel um optimale Steuerungsprobleme mit möglicherweise nicht glatten Zielfunktionen handeln, welche durch partielle Differentialgleichungen (PDG) eingeschränkt sind, die ebenfalls nicht glatte Terme enthalten können. Eine effiziente und robuste Lösung erfordert eine Kombination numerischer Simulationen und spezifischer Optimierungsalgorithmen. Lokal Lipschitz-stetige, nichtglatte Nemytzkii-Operatoren, welche direkt in der Problemformulierung auftreten, spielen eine wesentliche Rolle in der Untersuchung der zugrundeliegenden Optimierungsprobleme. In dieser Dissertation werden zwei spezifische Methoden und Algorithmen zur Lösung solcher nichtglatter Optimierungsprobleme in reflexiven Banachräumen vorgestellt und diskutiert. Als erste Lösungsmethode wird in dieser Dissertation die Minimierung von nichtglatten Operatoren in reflexiven Banachräumen mittels sukzessiver quadratischer Überschätzung vorgestellt, SALMIN. Ein neuartiger Optimierungsansatz für Optimierungsprobleme mit nichtglatten elliptischen PDG-Beschränkungen, welcher auf expliziter Strukturausnutzung beruht, stellt die zweite Lösungsmethode dar, SCALi. Das zentrale Merkmal dieser Methoden ist ein geeigneter Umgang mit Nichtglattheiten. Besonderes Augenmerk liegt dabei auf der zugrundeliegenden nichtglatten Struktur des Problems und der effektiven Ausnutzung dieser, um das Optimierungsproblem auf angemessene und effiziente Weise zu lösen.Non-smooth optimization problems in reflexive Banach spaces arise in many applications. Frequently, all non-differentiabilities involved are assumed to be given by Lipschitz-continuous operators such as abs, min and max. For example, such problems can refer to optimal control problems with possibly non-smooth objective functionals constrained by partial differential equations (PDEs) which can also include non-smooth terms. Their efficient as well as robust solution requires numerical simulations combined with specific optimization algorithms. Locally Lipschitz-continuous non-smooth non-linearities described by appropriate Nemytzkii operators which arise directly in the problem formulation play an essential role in the study of the underlying optimization problems. In this dissertation, two specific solution methods and algorithms to solve such non-smooth optimization problems in reflexive Banach spaces are proposed and discussed. The minimization of non-smooth operators in reflexive Banach spaces by means of successive quadratic overestimation is presented as the first solution method, SALMIN. A novel structure exploiting optimization approach for optimization problems with non-smooth elliptic PDE constraints constitutes the second solution method, SCALi. The central feature of these methods is the appropriate handling of non-differentiabilities. Special focus lies on the underlying structure of the problem stemming from the non-smoothness and how it can be effectively exploited to solve the optimization problem in an appropriate and efficient way

    Numerical Methods for Mixed-Integer Optimal Control with Combinatorial Constraints

    Get PDF
    This thesis is concerned with numerical methods for Mixed-Integer Optimal Control Problems with Combinatorial Constraints. We establish an approximation theorem relating a Mixed-Integer Optimal Control Problem with Combinatorial Constraints to a continuous relaxed convexified Optimal Control Problems with Vanishing Constraints that provides the basis for numerical computations. We develop a a Vanishing- Constraint respecting rounding algorithm to exploit this correspondence computationally. Direct Discretization of the Optimal Control Problem with Vanishing Constraints yield a subclass of Mathematical Programs with Equilibrium Constraints. Mathematical Programs with Equilibrium Constraint constitute a class of challenging problems due to their inherent non-convexity and non-smoothness. We develop an active-set algorithm for Mathematical Programs with Equilibrium Constraints and prove global convergence to Bouligand stationary points of this algorithm under suitable technical conditions. For efficient computation of Newton-type steps of Optimal Control Problems, we establish the Generalized Lanczos Method for trust region problems in a Hilbert space context. To ensure real-time feasibility in Online Optimal Control Applications with tracking-type Lagrangian objective, we develop a GauĂź-Newton preconditioner for the iterative solution method of the trust region problem. We implement the proposed methods and demonstrate their applicability and efficacy on several benchmark problems

    Numerical Solution of Optimal Control Problems with Explicit and Implicit Switches

    Get PDF
    This dissertation deals with the efficient numerical solution of switched optimal control problems whose dynamics may coincidentally be affected by both explicit and implicit switches. A framework is being developed for this purpose, in which both problem classes are uniformly converted into a mixed–integer optimal control problem with combinatorial constraints. Recent research results relate this problem class to a continuous optimal control problem with vanishing constraints, which in turn represents a considerable subclass of an optimal control problem with equilibrium constraints. In this thesis, this connection forms the foundation for a numerical treatment. We employ numerical algorithms that are based on a direct collocation approach and require, in particular, a highly accurate determination of the switching structure of the original problem. Due to the fact that the switching structure is a priori unknown in general, our approach aims to identify it successively. During this process, a sequence of nonlinear programs, which are derived by applying discretization schemes to optimal control problems, is solved approximatively. After each iteration, the discretization grid is updated according to the currently estimated switching structure. Besides a precise determination of the switching structure, it is of central importance to estimate the global error that occurs when optimal control problems are solved numerically. Again, we focus on certain direct collocation discretization schemes and analyze error contributions of individual discretization intervals. For this purpose, we exploit a relationship between discrete adjoints and the Lagrange multipliers associated with those nonlinear programs that arise from the collocation transcription process. This relationship can be derived with the help of a functional analytic framework and by interrelating collocation methods and Petrov–Galerkin finite element methods. In analogy to the dual-weighted residual methodology for Galerkin methods, which is well–known in the partial differential equation community, we then derive goal–oriented global error estimators. Based on those error estimators, we present mesh refinement strategies that allow for an equilibration and an efficient reduction of the global error. In doing so we note that the grid adaption processes with respect to both switching structure detection and global error reduction get along with each other. This allows us to distill an iterative solution framework. Usually, individual state and control components have the same polynomial degree if they originate from a collocation discretization scheme. Due to the special role which some control components have in the proposed solution framework it is desirable to allow varying polynomial degrees. This results in implementation problems, which can be solved by means of clever structure exploitation techniques and a suitable permutation of variables and equations. The resulting algorithm was developed in parallel to this work and implemented in a software package. The presented methods are implemented and evaluated on the basis of several benchmark problems. Furthermore, their applicability and efficiency is demonstrated. With regard to a future embedding of the described methods in an online optimal control context and the associated real-time requirements, an extension of the well–known multi–level iteration schemes is proposed. This approach is based on the trapezoidal rule and, compared to a full evaluation of the involved Jacobians, it significantly reduces the computational costs in case of sparse data matrices

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics

    Get PDF
    The second MFO Oberwolfach Workshop on Mixed-Integer Nonlinear Programming (MINLP) took place between 2nd and 8th June 2019. MINLP refers to one of the hardest Mathematical Programming (MP) problem classes, involving both nonlinear functions as well as continuous and integer decision variables. MP is a formal language for describing optimization problems, and is traditionally part of Operations Research (OR), which is itself at the intersection of mathematics, computer science, engineering and econometrics. The scientific program has covered the three announced areas (hierarchies of approximation, mixed-integer nonlinear optimal control, and dealing with uncertainties) with a variety of tutorials, talks, short research announcements, and a special "open problems'' session

    Resource Exchange Seller Alliances

    Get PDF
    Many carriers, such as airlines and ocean carriers, collaborate through the formation of alliances. The detailed alliance design is clearly important for both the stability of the alliance and profitability of the alliance members. This work is motivated by a real-life liner shipping "resource exchange alliance" agreement design. We provide an economic motivation for interest in resource exchange alliances and propose a model and method to design a resource exchange alliance. The model takes into account how the alliance members compete after a resource exchange by selling substitutable products and thus enables us to obtain insight into the effect of capacity and the intensity of competition on the extent to which an alliance can provide greater profit than when in the setting without an alliance. The problem of determining the optimal amounts of resources to exchange is formulated as a stochastic mathematical program with equilibrium constraints (SMPECs). We show how to determine whether there exists a unique equilibrium after resource exchange, how to compute the equilibrium, and how to compute the optimal resource exchange. SMPEC problem, which is generally very difficult to solve, is well-posed in the paper, and robust results can be obtained with a reasonable amount of computational effort
    corecore