24 research outputs found

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding

    Erasure Techniques in MRD codes

    Get PDF
    This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.Comment: 162 pages; Published by Zip publishing in 201

    QoS-Based and Secure Multipath Routing in Wireless Sensor Networks

    Get PDF
    With the growing demand for quality of service (QoS) aware routing protocols in wireless networks, QoS-based routing has emerged as an interesting research topic. A QoS guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. Furthermore, due to the increased use of sensor nodes in a variety of application fields, WSNs need to handle heterogeneous traffic with diverse priorities to achieve the required QoS. In this thesis, we investigate the problem of providing multi-QoS in routing protocols for WSNs. In particular, we investigate several aspects related to the application requirements and the network states and resources. We present multi-objective QoS aware routing protocol for WSNs that uses the geographic routing mechanism combined with the QoS requirements to meet diverse application requirements by considering the changing conditions of the network. The protocol formulates the application requirements with the links available resources and conditions to design heuristic neighbor discovery algorithms. Also, with the unlimited resource at the sink node, the process of selecting the routing path/paths is assigned to the sink. Paths selection algorithms are designed with various goals in order to extend network lifetime, enhance the reliability of data transmission, decrease end-to-end delay, achieve load balancing and provide fault tolerance. We also develop a cross-layer routing protocol that combines routing at network layer and the time scheduling at the MAC layer with respect to delay and reliability in an energy efficient way. A node-disjoint multipath routing is used and a QoS-aware priority scheduling considering MAC layer is proposed to ensure that real time and non-real time traffic achieve their desired QoS while alleviating congestion in the network. Additionally, we propose new mechanism for secure and reliable data transmission in multipath routing for WSNs. Different levels of security requirements are defined and depending on these requirements, a selective encryption scheme is introduced to encrypt selected number of coded fragments in order to enhance security and thereby reduce the time required for encryption. Node-disjoint multipath routing combined with source coding is used in order to enhance both security and reliability of data transmission. Also, we develop an allocation strategy that allocates fragments on paths to enhance both the security and probability of successful data delivery. Analysis and extensive simulation are conducted to study the performance of all the above proposed protocols

    Simplified decoding techniques for linear block codes

    Get PDF
    Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications
    corecore