627 research outputs found

    Hybrid Approach for Resource Provisioning in Cloud Computing

    Get PDF
    Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction. Elasticity of resources is considered as a key characteristic of cloud computing using this key characteristic; internet services are allocated the only-needed resources. This allocation of resources however should not be at the expense of the services’ performance. Allocation of resources without degrading performance is called resource provisioning. Resource provisioning does not only support the elasticity of resources, but also enhances cost efficiency and sustainability. The goal of this work is to investigate resource provisioning to increase the percentage of resources utilization without degrading the performance so that the power consumption of the cloud data centers is reduced. To achieve this goal, a hybrid-approach for resource provisioning is developed. In this approach, a list of virtual machines is requested, passed to a selection algorithm, sorting the machines according to their load, compute the threshold of the machines’ load, and combining the high load with low load from two different virtual machines on one super virtual machine. The approach was implemented in a simulator called CloudSim. It was used to run two sets of experiments. The first is to measure the power consumption of the data center as whole and hosts as well. And the second is concerned with the processing times and memory usage.  The results have shown that this approach outperforms traditional counterparts in resource provisioning. The results showed that the hybrid approach achieved reduction of (5.85 MW/s) in power consumption compared with the traditional counterparts for the whole data center, as well as reduction of (2.48 MW/s) in power consumption for the hosts

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Cloud-scale VM Deflation for Running Interactive Applications On Transient Servers

    Full text link
    Transient computing has become popular in public cloud environments for running delay-insensitive batch and data processing applications at low cost. Since transient cloud servers can be revoked at any time by the cloud provider, they are considered unsuitable for running interactive application such as web services. In this paper, we present VM deflation as an alternative mechanism to server preemption for reclaiming resources from transient cloud servers under resource pressure. Using real traces from top-tier cloud providers, we show the feasibility of using VM deflation as a resource reclamation mechanism for interactive applications in public clouds. We show how current hypervisor mechanisms can be used to implement VM deflation and present cluster deflation policies for resource management of transient and on-demand cloud VMs. Experimental evaluation of our deflation system on a Linux cluster shows that microservice-based applications can be deflated by up to 50\% with negligible performance overhead. Our cluster-level deflation policies allow overcommitment levels as high as 50\%, with less than a 1\% decrease in application throughput, and can enable cloud platforms to increase revenue by 30\%.Comment: To appear at ACM HPDC 202

    Cloud Workload Allocation Approaches for Quality of Service Guarantee and Cybersecurity Risk Management

    Get PDF
    It has become a dominant trend in industry to adopt cloud computing --thanks to its unique advantages in flexibility, scalability, elasticity and cost efficiency -- for providing online cloud services over the Internet using large-scale data centers. In the meantime, the relentless increase in demand for affordable and high-quality cloud-based services, for individuals and businesses, has led to tremendously high power consumption and operating expense and thus has posed pressing challenges on cloud service providers in finding efficient resource allocation policies. Allowing several services or Virtual Machines (VMs) to commonly share the cloud\u27s infrastructure enables cloud providers to optimize resource usage, power consumption, and operating expense. However, servers sharing among users and VMs causes performance degradation and results in cybersecurity risks. Consequently, how to develop efficient and effective resource management policies to make the appropriate decisions to optimize the trade-offs among resource usage, service quality, and cybersecurity loss plays a vital role in the sustainable future of cloud computing. In this dissertation, we focus on cloud workload allocation problems for resource optimization subject to Quality of Service (QoS) guarantee and cybersecurity risk constraints. To facilitate our research, we first develop a cloud computing prototype that we utilize to empirically validate the performance of different proposed cloud resource management schemes under a close to practical, but also isolated and well-controlled, environment. We then focus our research on the resource management policies for real-time cloud services with QoS guarantee. Based on queuing model with reneging, we establish and formally prove a series of fundamental principles, between service timing characteristics and their resource demands, and based on which we develop several novel resource management algorithms that statically guarantee the QoS requirements for cloud users. We then study the problem of mitigating cybersecurity risk and loss in cloud data centers via cloud resource management. We employ game theory to model the VM-to-VM interdependent cybersecurity risks in cloud clusters. We then conduct a thorough analysis based on our game-theory-based model and develop several algorithms for cybersecurity risk management. Specifically, we start our cybersecurity research from a simple case with only two types of VMs and next extend it to a more general case with an arbitrary number of VM types. Our intensive numerical and experimental results show that our proposed algorithms can significantly outperform the existing methodologies for large-scale cloud data centers in terms of resource usage, cybersecurity loss, and computational effectiveness

    OSMOSIS: Enabling Multi-Tenancy in Datacenter SmartNICs

    Full text link
    Multi-tenancy is essential for unleashing SmartNIC's potential in datacenters. Our systematic analysis in this work shows that existing on-path SmartNICs have resource multiplexing limitations. For example, existing solutions lack multi-tenancy capabilities such as performance isolation and QoS provisioning for compute and IO resources. Compared to standard NIC data paths with a well-defined set of offloaded functions, unpredictable execution times of SmartNIC kernels make conventional approaches for multi-tenancy and QoS insufficient. We fill this gap with OSMOSIS, a SmartNICs resource manager co-design. OSMOSIS extends existing OS mechanisms to enable dynamic hardware resource multiplexing on top of the on-path packet processing data plane. We implement OSMOSIS within an open-source RISC-V-based 400Gbit/s SmartNIC. Our performance results demonstrate that OSMOSIS fully supports multi-tenancy and enables broader adoption of SmartNICs in datacenters with low overhead.Comment: 12 pages, 14 figures, 103 reference

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin
    • …
    corecore