48,464 research outputs found

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201

    RiPLE: Recommendation in Peer-Learning Environments Based on Knowledge Gaps and Interests

    Full text link
    Various forms of Peer-Learning Environments are increasingly being used in post-secondary education, often to help build repositories of student generated learning objects. However, large classes can result in an extensive repository, which can make it more challenging for students to search for suitable objects that both reflect their interests and address their knowledge gaps. Recommender Systems for Technology Enhanced Learning (RecSysTEL) offer a potential solution to this problem by providing sophisticated filtering techniques to help students to find the resources that they need in a timely manner. Here, a new RecSysTEL for Recommendation in Peer-Learning Environments (RiPLE) is presented. The approach uses a collaborative filtering algorithm based upon matrix factorization to create personalized recommendations for individual students that address their interests and their current knowledge gaps. The approach is validated using both synthetic and real data sets. The results are promising, indicating RiPLE is able to provide sensible personalized recommendations for both regular and cold-start users under reasonable assumptions about parameters and user behavior.Comment: 25 pages, 7 figures. The paper is accepted for publication in the Journal of Educational Data Minin

    Alexandria: Extensible Framework for Rapid Exploration of Social Media

    Full text link
    The Alexandria system under development at IBM Research provides an extensible framework and platform for supporting a variety of big-data analytics and visualizations. The system is currently focused on enabling rapid exploration of text-based social media data. The system provides tools to help with constructing "domain models" (i.e., families of keywords and extractors to enable focus on tweets and other social media documents relevant to a project), to rapidly extract and segment the relevant social media and its authors, to apply further analytics (such as finding trends and anomalous terms), and visualizing the results. The system architecture is centered around a variety of REST-based service APIs to enable flexible orchestration of the system capabilities; these are especially useful to support knowledge-worker driven iterative exploration of social phenomena. The architecture also enables rapid integration of Alexandria capabilities with other social media analytics system, as has been demonstrated through an integration with IBM Research's SystemG. This paper describes a prototypical usage scenario for Alexandria, along with the architecture and key underlying analytics.Comment: 8 page
    • …
    corecore