762 research outputs found

    Robustness of bus overlays in optical networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 53-56).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Local area networks (LANs) nowadays use optical fiber as the medium of communication. This fiber is used to connect a collection of electro-optic nodes which form network clouds. A network cloud is a distribution network that connects several external nodes to the backbone, and often takes the form of a star or tree. Optical stars and trees have expensive and inefficient recovery schemes, and as a result, are not attractive options when designing networks. In order to solve this problem, we introduce a virtual topology that makes use of the robustness that is inherently present in a metropolitan area network (MAN) or wide area network (WAN) (long haul network). The virtual topology uses a folded bus scheme and includes some of the elements of the real topology (architecture). By optically bypassing some of the router/switch nodes in the physical architecture, the virtual topology yields better recovery performance and more efficient systems (with respect to cost related to bandwidth and recoverability). We present a bus overlay which uses simple access nodes and is robust to single failures. Our architecture allows the use of existing optical backbone infrastructure. We consider a linear folded bus architecture and introduce a T-shaped folded bus. Although buses are generally not able to recover from failures, we propose a loopback approach. Our approach allows optical bypass of some routers during normal operation, thus reducing the load on routers, but makes use of routers in case of failures. We analyze the behavior of our linear and T-shaped systems under average use and failure conditions. We show that certain simple characteristics of the traffic matrix give meaningful performance characterization. We show that our architecture provides solutions which limit loads on the router.by Ari Levon Libarikian.S.M

    A tabu search heuristic for routing in WDM networks.

    Get PDF
    Optical networks and Wavelength-Division Multiplexing (WDM) have been widely studied and utilized in recent years. By exploiting the huge bandwidth of optical networks, WDM appears to be one of the most promising technologies to meet the dramatically increased demand for bandwidth. Since optical resources in optical networks are very expensive, development of dynamic lightpath allocation strategies, which utilize network resource efficiently, is an important area of research. We assume that there is no optical wavelength conversion device in the network, and the wavelength-continuity constraint must be satisfied. Exact optimization techniques are typically too time-consuming to be useful for practical-sized networks. In this thesis we present a tabu search based heuristic approach which is used to establish an optimal lightpath dynamically in response to a new communication request in a WDM network. As far as we know, this is the first investigation using tabu search techniques for dynamical lightpath allocation in WDM networks. We have tested our approach with networks having different sizes. And then we have compared our results with those obtained using the MILP approach. In the vast majority of cases, tabu search was able to quickly generate a solution that was optimal or near-optimal, indicating that tabu search is a promising approach for the dynamic lightpath allocation problem in WDM networks. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .W36. Source: Masters Abstracts International, Volume: 43-01, page: 0247. Advisers: Subir Bandyopadhyay; Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Energy Efficient Survivable IP over WDM Networks with Network Coding

    Get PDF
    In this work we investigate the use of network coding in 1+1 survivable IP over WDM networks by encoding the protection paths of multiple flow with each other at intermediate nodes. We study the energy efficiency of this scheme through MILP, and a heuristic with five operating options. We evaluate the MILP and the heuristics on typical and regular network topologies. Our results show that implementing network coding can produce savings up to 37% on the ring topology and 23% considering typical topologies. We also study the impact of varying the demand volumes on the network coding performanc

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie
    • 

    corecore