1,292 research outputs found

    Multiple-retrieval case-based reasoning for course timetabling problems

    Get PDF
    The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches

    Multiple-Retrieval Case-Based Reasoning for Course Timetabling Problems

    Get PDF
    The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches

    Multiple-Retrieval Case-Based Reasoning for Course Timetabling Problems

    Get PDF
    The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches

    Case-based reasoning for course timetabling problems

    Get PDF
    The research in this thesis investigates Case-Based Reasoning (CBR), a Knowledge-Based Reasoning technique that proved to be capable of providing good solutions in educational course timetabling problems. Following the basic idea behind CBR, experiences in solving previous similar timetabling problems are employed to find the solutions for new problems. A basic CBR system that is hierarchically organized with structured knowledge representations by attribute graphs is proposed in Chapter Four. The system is then further improved to solve a wider range of problems, which is described in Chapter Five. Evaluations on a large number of experiments indicate that this approach could provide a significant step forward in timetabling and scheduling research. This basic system works well on relatively small problems. To deal with this drawback a multiple-retrieval approach that partitions large timetabling problems into small solvable sub-problems is presented in Chapter Six. Good results are obtained from a wide range of experiments. In Chapter Seven, a new idea is introduced in CBR for solving timetabling problems by investigating the approach to select the most appropriate heuristic method rather than to employ it directly on the problem, in the attempt to raise the level of generality at which we can operate. All the evidence obtained from the first stage experiments indicates that there is a range of promising future directions. Finally in Chapter Eight the results of the work are evaluated and some directions for future work are present

    Case-based reasoning for course timetabling problems

    Get PDF
    The research in this thesis investigates Case-Based Reasoning (CBR), a Knowledge-Based Reasoning technique that proved to be capable of providing good solutions in educational course timetabling problems. Following the basic idea behind CBR, experiences in solving previous similar timetabling problems are employed to find the solutions for new problems. A basic CBR system that is hierarchically organized with structured knowledge representations by attribute graphs is proposed in Chapter Four. The system is then further improved to solve a wider range of problems, which is described in Chapter Five. Evaluations on a large number of experiments indicate that this approach could provide a significant step forward in timetabling and scheduling research. This basic system works well on relatively small problems. To deal with this drawback a multiple-retrieval approach that partitions large timetabling problems into small solvable sub-problems is presented in Chapter Six. Good results are obtained from a wide range of experiments. In Chapter Seven, a new idea is introduced in CBR for solving timetabling problems by investigating the approach to select the most appropriate heuristic method rather than to employ it directly on the problem, in the attempt to raise the level of generality at which we can operate. All the evidence obtained from the first stage experiments indicates that there is a range of promising future directions. Finally in Chapter Eight the results of the work are evaluated and some directions for future work are present

    Case Based Heuristic Selection for Timetabling Problems

    Get PDF
    This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Hybrid Graph Heuristics within a Hyper-heuristic Approach to Exam Timetabling Problems

    Get PDF
    This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach

    Course Time Table Scheduling for a Local College

    Get PDF
    This study dive into the field of course time table scheduling for a local institution. The subject of the study will be a local college in Malaysia, in particular on the SEGi College branch in Penang. This covers the development of the prototype software which will enable the simulation of the course time table for both the students and lecturers. The prototype software will be on a local search approach with reference to Hill Climbing with Random Walk algorithm and Best First Search algorithm. This research enables users to increase efficiency and performance in developing a course time table. Later,this research will be proposed for implementation to the management of SEGi College branch in Penang

    Analysing Similarity in Exam Timetabling

    Get PDF
    In this paper we carry out an investigation of some of the major features of exam timetabling problems with a view to developing a similarity measure. This similarity measure will be used within a case-based reasoning (CBR) system to match a new problem with one from a case-based of previously solved problems. The case base will also store the heuristic for meta-heuristic techniques applied most successfully to each problem stored. The technique(s) stored with the matched case will be retrieved and applied to the new case. The CBR assumption in our system is that similar problems can be solved equally well by the same technique
    • 

    corecore