87 research outputs found

    Throughput Performance Evaluation of Multiservice Multirate OCDMA in Flexible Networks

    Get PDF
    \u3cp\u3eIn this paper, new analytical formalisms to evaluate the packet throughput of multiservice multirate slotted ALOHA optical code-division multiple-access (OCDMA) networks are proposed. The proposed formalisms can be successfully applied to 1-D and 2-D OCDMA networks with any number of user classes in the system. The bit error rate (BER) and packet correct probability expressions are derived, considering the multiple-access interference as binomially distributed. Packet throughput expressions, on the other hand, are derived considering Poisson, binomial, and Markov chain approaches for the composite packet arrivals distributions, with the latter defined as benchmark. A throughput performance evaluation is carried out for two distinct user code sequences separately, namely, 1-D and 2-D multiweight multilength optical orthogonal code (MWML-OOC). Numerical results show that the Poisson approach underestimates the throughput performance in unacceptable levels and incorrectly predicts the number of successfully received packets for most offered load values even in favorable conditions, such as for the 2-D MWML-OOC OCDMA network with a considerably large number of simultaneous users. On the other hand, the binomial approach proved to be more straightforward, computationally more efficient, and just as accurate as the Markov chain approach.\u3c/p\u3

    Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Get PDF
    This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA) computer network with different quality of service (QoS) requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs), which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD) noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    Overlapped CDMA system in optical packet networks : resource allocation and performance evalutation

    Get PDF
    Dans cette thĂšse, la performance du systĂšme CDMA Ă  chevauchement optique (OVCDMA) au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) et l'allocation des ressources au niveau de la couche physique (PRY) sont Ă©tudiĂ©es. Notre but est d'apporter des amĂ©liorations pour des applications Ă  dĂ©bits multiples en rĂ©pondant aux exigences de dĂ©lai minimum tout en garantissant la qualitĂ© de service (QoS). Nous proposons de combiner les couches PRY et MAC par une nouvelle approche d'optimisation de performance qui consolide l'efficacitĂ© potentielle des rĂ©seaux optiques. Pour atteindre notre objectif, nous rĂ©alisons plusieurs Ă©tapes d'analyse. Tout d 'abord, nous suggĂ©rons le protocole S-ALOHA/OV-CDMA optique pour sa simplicitĂ© de contrĂŽler les transmissions optiques au niveau de la couche liaison. Le dĂ©bit du rĂ©seau, la latence de transmission et la stabilitĂ© du protocole sont ensuite Ă©valuĂ©s. L'Ă©valuation prend en considĂ©ration les caractĂ©ristiques physiques du systĂšme OY-CDMA, reprĂ©sentĂ©es par la probabilitĂ© de paquets bien reçus. Le systĂšme classique Ă  traitement variable du gain (YPG) du CDMA, ciblĂ© pour les applications Ă  dĂ©bits multiples, et le protocole MAC ±round-robinÂż rĂ©cepteur/Ă©metteur (R31), initialement proposĂ© pour les rĂ©seaux par paquets en CDMA optique sont Ă©galement pris en compte. L'objectif est d ' Ă©valuer comparativement la performance du S-ALOHA/OY-CDMA en termes de l'immunitĂ© contre l'interfĂ©rence d'accĂšs lTIultiple (MAI) et les variations des charges du trafic. Les rĂ©sultats montrent que les performances peuvent varier en ce qui concerne le choix du taux de transmission et la puissance de transmission optique au niveau de la couche PRY. Ainsi, nous proposons un schĂ©ma de rĂ©partition optimale des ressources pour allouer des taux de transmission Ă  chevauchement optique et de puissance optique de transmission dans le systĂšme OY-CDMA comme des ressources devant ĂȘtre optimalement et Ă©quitablement rĂ©parties entre les utilisateurs qui sont regroupĂ©s dans des classes de diffĂ©rentes qualitĂ©s de service. La condition d'optimalitĂ© est basĂ©e sur la maximisation de la capacitĂ© par utilisateur de la couche PHY. De ce fait, un choix optimal des ressources physiques est maintenant possible, mais il n'est pas Ă©quitable entre les classes. Par consĂ©quent, pour amĂ©liorer la performance de la couche liaison tout en Ă©liminant le problĂšme d'absence d'Ă©quitĂ©, nous proposons comme une approche unifiĂ©e un schĂ©ma Ă©quitable et optimal pour l'allocation des ressources fondĂ© sur la qualitĂ© de service pour des multiplexages temporels des rĂ©seaux par paquets en CDMA Ă  chevauchement optique. Enfin, nous combinons cette derniĂšre approche avec le protocole MAC dans un problĂšme d'optimisation d'allocation Ă©quitable des ressources Ă  contrainte de dĂ©lai afin de mieux amĂ©liorer le dĂ©bit du rĂ©seau et le dĂ©lai au niveau de la couche liaison avec allocation Ă©quitable et optimale des ressources au niveau de la couche PHY

    Fiber-optic code division multiple access : multi-class optical orthogonal codes, optical power control, and polarization encoding

    Get PDF
    Ever since the mid- 1980s when the single-mode fiber-optic media were believed to become the main highways of future telecommunications networks for transporting high-volume high-quality multipurpose information, the need for all-optical multi-access networking became important. An all-optical multi-access network is a collection of multiple nodes where the interconnection among various nodes is via single- or multi-mode fiber optics and for which they perform all their essential signal processing requirements such as switching, add-drop, multiplexing/demultiplexing and amplification in the optical domain. Optical CDMA networking is one possible technique that allows multiple users in local area networks to access the same fiber channel asynchronously with no delay or scheduling. Optical CDMA networks are not without their own problems. Search for codes suitable to the optical domain is one of the important topics addressed in the literature on optical CDMA. Existing codes developed in the late 80's are limited to single class traffic or can support multiclass traffic but with restrictions on code lengths and weights. Also the number of generated codes is severely limited due to orthogonality issues. In this thesis, we pay particular attention to propose new codes that can support multiclass traffic with arbitrary code weights and lengths. Therefore, data sources with varying traffic demands can be accommodated by optical CDMA networks using the proposed codes. We also present a simple generation technique for the proposed multiclass codes and analyze their performance. The number of users supported by the proposed multiclass codes will be limited since it is an extension of existing code designs with such limitation. We then propose the use of polarization dimension in order to double the number of supported users. On the other hand, incoherent optical CDMA systems are considered as positive systems meaning that only unipolar codes can be considered for such systems. Therefore, multiple access interference will be quite high in optical CDMA due to the nature of incoherent power detection. Reducing the effect of the interference on the performance of optical CDMA is an important topic. We propose the use of power control to decrease the effects of interference in optical star networks in which users' fiber lengths and data rates are not equal. We consider the case of optically amplified network with amplifier noise as the main source. We then elaborate by considering the nonlinearity in the photodetection process and propose the use of an iterative algorithm to find the solution of the non-linear optical power control problem. Finally, we propose an optical CDMA system based on polarization encoding. Since the encoding is performed in the spatial domain, therefore, positive and negative levels can be realized. This approach leads to increasing the number of supported users of optical CDMA by the use of known codes, such as Gold and Hadamard codes, with enhanced performance.reviewe

    Applications of perfect difference codes in fiber-optics and wireless optical code-division multiplexing/multiple-access systems

    Get PDF
    After establishing itself in the radio domain, Spread spectrum code-division multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical domain as well. Due to its fairness, flexibility, service differentiation and increased inherent security, CDMA is proved to be more suitable for the bursty nature of local area networks than synchronous multiplexing techniques like Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division Multiplexing (TDM). In optical domain, CDMA techniques are commonly known as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) is one of the techniques used in the literature to deal with the problem of MAI. The choice of spreading code in any CDMA system is another way to ensure the successful recovery of data at the receiving end by minimizing the effect of MAI and it also dictates the hardware design of the encoder and decoder. This thesis focuses on the efficient design of encoding and decoding hardware. Perfect difference codes (PDC) are chosen as spreading sequences due to their good correlation properties. In most of the literature, evaluation of error probability is based on the assumptions of ideal conditions. Such assumptions ignore major physical impairments such as power splitting losses at the multiplexers of transmitters and receivers, and gain losses at the receivers, which may in practice be an overestimate or underestimate of the actual probability of error. This thesis aims to investigate thoroughly with the consideration of practical impairments the applications of PDCs and other spreading sequences in optical communications systems based on spectral-amplitude coding and utilizing codedivision as multiplexing/multiple-access technique. This work begins with a xix general review of optical CDMA systems. An open-ended practical approach has been used to evaluate the actual error probabilities of OCDM/A systems under study. It has been concluded from results that mismatches in the gains of photodetectors, namely avalanche photodiode (APDs), used at the receiver side and uniformity loss in the optical splitters results in the inaccurate calculation of threshold level used to detect the data and can seriously degrade the system bit error rate (BER) performance. This variation in the threshold level can be compensated by employing techniques which maintain a constant interference level so that the decoding architecture does not have to estimate MAI every time to make a data bit decision or by the use of balanced sequences. In this thesis, as a solution to the above problem, a novel encoding and decoding architecture is presented for perfect difference codes based on common zero code technique which maintains a constant interference level at all instants in CDM system and thus relieves the need of estimating interference. The proposed architecture only uses single multiplexer at the transmitters for all users in the system and a simple correlation based receiver for each user. The proposed configuration not only preserves the ability of MAI in Spectral-Amplitude Coding SAC-OCDM system, but also results in a low cost system with reduced complexity. The results show that by using PDCs in such system, the influence of MAI caused by other users can be reduced, and the number of active users can be increased significantly. Also a family of novel spreading sequences are constructed called Manchestercoded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM systems. MCMLCs are designed to be used for both single-rate and Multirate systems. First the construction of MCMLCs is presented and then the bit error rate performance is analyzed. Finally the proposed encoding/decoding architecture utilizing perfect difference codes is applied in wireless infrared environment and the performance is found to be superior to other codes

    Variable weight spectral amplitude coding for multiservice OCDMA networks

    Get PDF
    The emergence of heterogeneous applications such as internet data, video streaming, and online gaming, brings in a demand for a network environ- ments with capability of supporting diverse Quality of Services (QoS). Prioritizing the services is essential to ensure the delivery of information is at their best. This paper proposes a new code family to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied in order to obtain the desired signal quality. The proposed variable-weight code (VW-code) is constructed based on basic multi-service (MS) code. Mathematical model is developed to for performance evaluation of VW-MS code. In addition, the properties of pro- posed code is compared with other VW-OCDMA codes. It is shown that the proposed VW-MS provide an optimal code length with minimum cross- correlation compared to other VW-codes. Performance of VW-MS designed for triple-play services operating at bit rates of 0.622, 1.25 and 2.5 Gbps is demonstrated

    Variable-Weight Optical Code Division Multiple Access System using Di erent Detection Scheme, Journal of Telecommunications and Information Technology, 2016, nr 3

    Get PDF
    In this paper a Variable Weight OCDMA (VW-OCDMA) system using KS code with Direct Decoding (DD), Complementary Subtraction (CS) and AND subtraction detections is proposed. System performance is analyzed using mathematical approximation and software simulation. In mathematical analysis, the e ects of Phase-Induced Intensity Noise, shot noise and thermal noise are taken into account. Bit Error Rate of di erent users is plotted as a function of received optical power per chip with varying the bit rates and number of active users. It has been shown that for di erent bit rates and number of users, system using DD has better performance than the system applying CS and AND detection. Using DD scheme, the number of active users are 100 while this value is 27 and 25 in case of using CS and AND detection, respectively, when the received optical power per chip is {10 dBm

    Variable weight code division multiple access system for monitoring vibration of unequally distributed points

    Get PDF
    The ever-growing demand for more accurate structural health monitoring of large scale facilities such as modern high-speed railways and bridges have resulted in the development of optical sensor networks (OSN), which help eliminate the disadvantages of conventional electric sensors, the most significant of which are sensitivity to electromagnetic interferences and larger sizes. The existing fibre optic infrastructures that are implanted mainly for communication purposes are not widely used by OSNs, due to the lack of appropriate multiplexing techniques. This study proposes an optical code division multiple access (OCDMA) system for support vibration sensing of unequally distributed points. The proposed system takes the advantages of spectral amplitude encoding (SAC) technique in providing differentiated services in physical layer by varying code weights. Simulation results monitoring three vibration sensor nodes with different distances are presented in the paper. The simulation and mathematical analysis indicate the suitability and simple implementation of the proposed system for supporting vibration sensing with high accuracy
    • 

    corecore