65 research outputs found

    Graph coloring-based multichannel MAC protocol in distributed underwater acoustic sensor networks

    Get PDF
    In this paper, the multichannel medium access control (MAC) problem in distributed underwater acoustic sensor networks (UASNs) were investigated. Compared with single-channel MAC protocols in terrestrial radio networks, there exist multichannel hidden terminal problem and long-delay hidden terminal problem in multichannel MAC protocol due to long propagation delay in UASNs. In addition, energy constraint makes channel allocation a challenging problem in distributed UASNs. To solve these aforementioned problems, a new multichannel MAC protocol, called graph coloring-based multichannel MAC protocol (GCMAC) is present. The protocol GCMAC is a synchronized MAC protocol which splits the time into three phases, namely, channel negotiation phase, channel selecting phase and data transmission phase. Specially, the rule for selecting channel is carefully designed based on graph coloring theory to avoid collision and maximize the utilization rate of channels in channel selecting phase. Simulation results show that GCMAC can greatly improve the system throughput and energy efficiency by effectively solving the hidden terminal problems and channel allocation problem

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Medium Access Control in Distributed Networks with Large Propagation Delay

    Full text link
    Most of the Earth is covered by water, so underwater acoustic networks (UWANs) are becoming increasingly popular in a variety of undersea applications. The needs to understand the underwater environment and exploit rich undersea resources have motivated a further development of UWANs. Underwater acoustic signals suffer from more difficult physical channel phenomena than terrestrial radio signals due to the harsh underwater environment, such as sound absorption, time-varying multipath spread, man-made and ambient noise, temperature and pressure dependent refraction, scattering and Doppler shift. Among all the challenges, the large ratio of propagation delay to packet duration (relative propagation delay (a)) is arguably the most difficult one to address in the Medium Access Control (MAC) layer. In this dissertation we focus on the examination and improvement of the MAC layer function in UWANs, based on a critical examination of existing techniques. Many MAC techniques have been proposed in recent years, however most of them assume the ratio of the propagation delay to the packet duration is negligibly small (a>1), these protocols perform poorly. This is because the large a leads to both a large negotiation delay in handshaking based protocols and the space-time uncertainty problem as the packets do not arrive at each node contemporarily. Some underwater-oriented protocols have been proposed which attempt to address these issues but the more successful rely on master nodes or a common understanding of geometry or time. We show by analysis and simulation that it is possible to eliminate collisions in ad-hoc networks with large relative propagation delay (a>>1) as well as improving the channel utilisation, without a common understanding of geometry or time. This technique is generally applicable, even for truly ad-hoc homogeneous peer-to-peer networks with no reliance on master nodes or other heterogeneous features. The mechanism is based on future scheduling with the inclusion of overhearing of RTS messages and allowing third-party objections to proposed transmissions. This MAC mechanism is immediately applicable in underwater acoustic networks (UWANs), and may find other uses, such as in space or very high rate terrestrial wireless networks. In summary, the key contributions of this study are: investigating the causes of the poor performance of existing MAC protocols in ad-hoc UWANs with large relative propagation delay, fully detailing the problem in order to propose analytic solutions, demonstrating how the MAC layer of an ad-hoc UWAN can eliminate packet collisions as well as improve channel utilisation without time synchronization or a network’s self-configuring phase to gain knowledge of the geometry, and verifying the utility of the proposals via both theoretical analysis and simulations

    Multi-channel Communication in Wireless Networks

    Get PDF
    Multi-channel communication has been developed to overcome some limitations related to the throughput and delivery rate which become necessary for many applications that require sufficient bandwidth to transmit a large amount of data in Wireless Networks (WNs) such as multimedia communication. However, the requirement of frequent negotiation for the channels assignment process incurs extra-large communication overhead and collisions, which results in the reduction of both communication quality and network lifetime. This effect can play an important role in the performance deterioration of certain WNs types, especially the Wireless Sensor Networks (WSNs) since they are characterized by their limited resources. This work addresses the improvement of communication in multi-channel WSNs. Consequently, four protocols are proposed. The first one is the Multi-Channel Scheduling Protocol (MCSP) for wireless personal networks IEEE802.15.4, which focuses on overcoming the collisions problem through a multi-channel scheduling scheme. The second protocol is the Energy-efficient Reinforcement Learning (RL) Multi-channel MAC (ERL MMAC) for WSNs, which bases on the enhancement of the energy consumption in WSNs by reducing collisions and balancing the remaining energy between the nodes using a singleagent RL. The third work is the proposition of a new heuristically accelerated RL protocol named Heuristically Accelerated Reinforcement Learning approach for Channel Assignment (HARL CA) for WSNs to reduce the number of learning iterations in an energy-efficient way taking into account the bandwidth aspect in the scheduling process. Finally, the fourth contribution represents a proposition of a new cooperative multi-agent RL approach for Channel Assignment (CRLCA) in WSNs, which improves cooperative learning using an accelerated learning model, and overcomes the extra communication overhead problem of the cooperative RL using a new method for self-scheduling and energy balancing. The proposed approach is performed through two algorithms SCRLCA and DCRLCA for Static and Dynamic performance respectively. The proposed protocols and techniques have been successfully evaluated and show outperformed results in different cases through several experiments

    Acronym dictionary

    Get PDF
    This reference was originally compiled as a tool for abstracters who need to know the expansion of acronyms they may encounter in the texts they are analyzing. It is a general rule of abstracting at the NASA Center For Aerospace Information (CASI) that acronyms are expanded in the abstract to enhance both information content and searchability. Over the last 22 years, abstracters at CASI have recorded acronyms and their expansions as they were encountered in documents. This is therefore an ad-hoc reference, rather than a systematic collection of all acronyms related to aerospace science and technology

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out
    • …
    corecore