1,791 research outputs found

    3D scanning of cultural heritage with consumer depth cameras

    Get PDF
    Three dimensional reconstruction of cultural heritage objects is an expensive and time-consuming process. Recent consumer real-time depth acquisition devices, like Microsoft Kinect, allow very fast and simple acquisition of 3D views. However 3D scanning with such devices is a challenging task due to the limited accuracy and reliability of the acquired data. This paper introduces a 3D reconstruction pipeline suited to use consumer depth cameras as hand-held scanners for cultural heritage objects. Several new contributions have been made to achieve this result. They include an ad-hoc filtering scheme that exploits the model of the error on the acquired data and a novel algorithm for the extraction of salient points exploiting both depth and color data. Then the salient points are used within a modified version of the ICP algorithm that exploits both geometry and color distances to precisely align the views even when geometry information is not sufficient to constrain the registration. The proposed method, although applicable to generic scenes, has been tuned to the acquisition of sculptures and in this connection its performance is rather interesting as the experimental results indicate

    Autonomous 3D mapping and surveillance of mines with MAVs

    Get PDF
    A dissertation Submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, for the degree of Master of Science. 12 July 2017.The mapping of mines, both operational and abandoned, is a long, di cult and occasionally dangerous task especially in the latter case. Recent developments in active and passive consumer grade sensors, as well as quadcopter drones present the opportunity to automate these challenging tasks providing cost and safety bene ts. The goal of this research is to develop an autonomous vision-based mapping system that employs quadrotor drones to explore and map sections of mine tunnels. The system is equipped with inexpensive, structured light, depth cameras in place of traditional laser scanners, making the quadrotor setup more viable to produce in bulk. A modi ed version of Microsoft's Kinect Fusion algorithm is used to construct 3D point clouds in real-time as the agents traverse the scene. Finally, the generated and merged point clouds from the system are compared with those produced by current Lidar scanners.LG201

    A multisensor SLAM for dense maps of large scale environments under poor lighting conditions

    Get PDF
    This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted in a push towards autonomous solutions to the most dangerous operations, including surveying tasks. Many existing autonomous mapping techniques rely on approaches to the Simultaneous Localization and Mapping (SLAM) problem which are not suited to the extreme characteristics of active underground mining environments. Our proposed multisensor system has been designed from the outset to address the unique challenges associated with underground SLAM. The robustness, self-containment and portability of the system maximize the potential applications.The multisensor mapping solution proposed as a result of this work is based on a fusion of omnidirectional bearing-only vision-based localization and 3D laser point cloud registration. By combining these two SLAM techniques it is possible to achieve some of the advantages of both approaches – the real-time attributes of vision-based SLAM and the dense, high precision maps obtained through 3D lasers. The result is a viable autonomous mapping solution suitable for application in challenging underground mining environments.A further improvement to the robustness of the proposed multisensor SLAM system is a consequence of incorporating colour information into vision-based localization. Underground mining environments are often dominated by dynamic sources of illumination which can cause inconsistent feature motion during localization. Colour information is utilized to identify and remove features resulting from illumination artefacts and to improve the monochrome based feature matching between frames.Finally, the proposed multisensor mapping system is implemented and evaluated in both above ground and underground scenarios. The resulting large scale maps contained a maximum offset error of ±30mm for mapping tasks with lengths over 100m

    Exploitation of time-of-flight (ToF) cameras

    Get PDF
    This technical report reviews the state-of-the art in the field of ToF cameras, their advantages, their limitations, and their present-day applications sometimes in combination with other sensors. Even though ToF cameras provide neither higher resolution nor larger ambiguity-free range compared to other range map estimation systems, advantages such as registered depth and intensity data at a high frame rate, compact design, low weight and reduced power consumption have motivated their use in numerous areas of research. In robotics, these areas range from mobile robot navigation and map building to vision-based human motion capture and gesture recognition, showing particularly a great potential in object modeling and recognition.Preprin

    Three-Dimensional Reconstruction and Modeling Using Low-Precision Vision Sensors for Automation and Robotics Applications in Construction

    Full text link
    Automation and robotics in construction (ARC) has the potential to assist in the performance of several mundane, repetitive, or dangerous construction tasks autonomously or under the supervision of human workers, and perform effective site and resource monitoring to stimulate productivity growth and facilitate safety management. When using ARC technologies, three-dimensional (3D) reconstruction is a primary requirement for perceiving and modeling the environment to generate 3D workplace models for various applications. Previous work in ARC has predominantly utilized 3D data captured from high-fidelity and expensive laser scanners for data collection and processing while paying little attention of 3D reconstruction and modeling using low-precision vision sensors, particularly for indoor ARC applications. This dissertation explores 3D reconstruction and modeling for ARC applications using low-precision vision sensors for both outdoor and indoor applications. First, to handle occlusion for cluttered environments, a joint point cloud completion and surface relation inference framework using red-green-blue and depth (RGB-D) sensors (e.g., Microsoft® Kinect) is proposed to obtain complete 3D models and the surface relations. Then, to explore the integration of prior domain knowledge, a user-guided dimensional analysis method using RGB-D sensors is designed to interactively obtain dimensional information for indoor building environments. In order to allow deployed ARC systems to be aware of or monitor humans in the environment, a real-time human tracking method using a single RGB-D sensor is designed to track specific individuals under various illumination conditions in work environments. Finally, this research also investigates the utilization of aerially collected video images for modeling ongoing excavations and automated geotechnical hazards detection and monitoring. The efficacy of the researched methods has been evaluated and validated through several experiments. Specifically, the joint point cloud completion and surface relation inference method is demonstrated to be able to recover all surface connectivity relations, double the point cloud size by adding points of which more than 87% are correct, and thus create high-quality complete 3D models of the work environment. The user-guided dimensional analysis method can provide legitimate user guidance for obtaining dimensions of interest. The average relative errors for the example scenes are less than 7% while the absolute errors less than 36mm. The designed human worker tracking method can successfully track a specific individual in real-time with high detection accuracy. The excavation slope stability monitoring framework allows convenient data collection and efficient data processing for real-time job site monitoring. The designed geotechnical hazard detection and mapping methods enable automated identification of landslides using only aerial video images collected using drones.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138626/1/yongxiao_1.pd
    • …
    corecore