25,381 research outputs found

    Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits

    Full text link
    In the stochastic knapsack problem, we are given a knapsack of size B, and a set of jobs whose sizes and rewards are drawn from a known probability distribution. However, we know the actual size and reward only when the job completes. How should we schedule jobs to maximize the expected total reward? We know O(1)-approximations when we assume that (i) rewards and sizes are independent random variables, and (ii) we cannot prematurely cancel jobs. What can we say when either or both of these assumptions are changed? The stochastic knapsack problem is of interest in its own right, but techniques developed for it are applicable to other stochastic packing problems. Indeed, ideas for this problem have been useful for budgeted learning problems, where one is given several arms which evolve in a specified stochastic fashion with each pull, and the goal is to pull the arms a total of B times to maximize the reward obtained. Much recent work on this problem focus on the case when the evolution of the arms follows a martingale, i.e., when the expected reward from the future is the same as the reward at the current state. What can we say when the rewards do not form a martingale? In this paper, we give constant-factor approximation algorithms for the stochastic knapsack problem with correlations and/or cancellations, and also for budgeted learning problems where the martingale condition is not satisfied. Indeed, we can show that previously proposed LP relaxations have large integrality gaps. We propose new time-indexed LP relaxations, and convert the fractional solutions into distributions over strategies, and then use the LP values and the time ordering information from these strategies to devise a randomized adaptive scheduling algorithm. We hope our LP formulation and decomposition methods may provide a new way to address other correlated bandit problems with more general contexts

    SEGMENT3D: A Web-based Application for Collaborative Segmentation of 3D images used in the Shoot Apical Meristem

    Full text link
    The quantitative analysis of 3D confocal microscopy images of the shoot apical meristem helps understanding the growth process of some plants. Cell segmentation in these images is crucial for computational plant analysis and many automated methods have been proposed. However, variations in signal intensity across the image mitigate the effectiveness of those approaches with no easy way for user correction. We propose a web-based collaborative 3D image segmentation application, SEGMENT3D, to leverage automatic segmentation results. The image is divided into 3D tiles that can be either segmented interactively from scratch or corrected from a pre-existing segmentation. Individual segmentation results per tile are then automatically merged via consensus analysis and then stitched to complete the segmentation for the entire image stack. SEGMENT3D is a comprehensive application that can be applied to other 3D imaging modalities and general objects. It also provides an easy way to create supervised data to advance segmentation using machine learning models

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods
    • …
    corecore