1,839 research outputs found

    Single image super resolution technique: An extension to true color images

    Get PDF
    The super-resolution (SR) technique reconstructs a high-resolution image from single or multiple low-resolution images. SR has gained much attention over the past decade, as it has significant applications in our daily life. This paper provides a new technique of a single image super-resolution on true colored images. The key idea is to obtain the super-resolved image from observed low-resolution images. A proposed technique is based on both the wavelet and spatial domain-based algorithms by exploiting the advantages of both of the algorithms. A back projection with an iterative method is implemented to minimize the reconstruction error and for noise removal wavelet-based de-noising method is used. Previously, this technique has been followed for the grayscale images. In this proposed algorithm, the colored images are taken into account for super-resolution. The results of the proposed method have been examined both subjectively by observation of the results visually and objectively by considering the peak signal-to-noise ratio (PSNR) and mean squared error (MSE), which gives significant results and visually better in quality from the bi-cubic interpolation technique

    Decoder Hardware Architecture for HEVC

    Get PDF
    This chapter provides an overview of the design challenges faced in the implementation of hardware HEVC decoders. These challenges can be attributed to the larger and diverse coding block sizes and transform sizes, the larger interpolation filter for motion compensation, the increased number of steps in intra prediction and the introduction of a new in-loop filter. Several solutions to address these implementation challenges are discussed. As a reference, results for an HEVC decoder test chip are also presented.Texas Instruments Incorporate

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level
    corecore