30,490 research outputs found

    Finite Mechanical Proxies for a Class of Reducible Continuum Systems

    Full text link
    We present the exact finite reduction of a class of nonlinearly perturbed wave equations, based on the Amann-Conley-Zehnder paradigm. By solving an inverse eigenvalue problem, we establish an equivalence between the spectral finite description derived from A-C-Z and a discrete mechanical model, a well definite finite spring-mass system. By doing so, we decrypt the abstract information encoded in the finite reduction and obtain a physically sound proxy for the continuous problem.Comment: 15 pages, 3 figure

    Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications

    Full text link
    We provide a theory to establish the existence of nonzero solutions of perturbed Hammerstein integral equations with deviated arguments, being our main ingredient the theory of fixed point index. Our approach is fairly general and covers a variety of cases. We apply our results to a periodic boundary value problem with reflections and to a thermostat problem. In the case of reflections we also discuss the optimality of some constants that occur in our theory. Some examples are presented to illustrate the theory.Comment: 3 figures, 23 page

    Orbital stability of periodic waves in the class of reduced Ostrovsky equations

    Get PDF
    Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equations of the Klein--Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes.Comment: 34 page
    • …
    corecore