413 research outputs found

    Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation

    Full text link
    The aim of this paper is the accurate numerical study of the KP equation. In particular we are concerned with the small dispersion limit of this model, where no comprehensive analytical description exists so far. To this end we first study a similar highly oscillatory regime for asymptotically small solutions, which can be described via the Davey-Stewartson system. In a second step we investigate numerically the small dispersion limit of the KP model in the case of large amplitudes. Similarities and differences to the much better studied Korteweg-de Vries situation are discussed as well as the dependence of the limit on the additional transverse coordinate.Comment: 39 pages, 36 figures (high resolution figures at http://www.mis.mpg.de/preprints/index.html

    Whitham modulation theory for the Kadomtsev-Petviashvili equation

    Full text link
    The genus-1 KP-Whitham system is derived for both variants of the Kadomtsev-Petviashvili (KP) equation (namely, the KPI and KPII equations). The basic properties of the KP-Whitham system, including symmetries, exact reductions, and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-deVries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable while all genus-1 solutions of KPII {are linearly stable within the context of Whitham theory.Comment: Significantly revised versio

    Exploring the Dynamics of Nonlocal Nonlinear Waves: Analytical Insights into the Extended Kadomtsev-Petviashvili Model

    Full text link
    The study of nonlocal nonlinear systems and their dynamics is a rapidly increasing field of research. In this study, we take a closer look at the extended nonlocal Kadomtsev-Petviashvili (enKP) model through a systematic analysis of explicit solutions. Using a superposed bilinearization approach, we obtained a bilinear form of the enKP equation and constructed soliton solutions. Our findings show that the nature of the resulting nonlinear waves, including the amplitude, width, localization, and velocity, can be controlled by arbitrary solution parameters. The solutions exhibited both symmetric and asymmetric characteristics, including localized bell-type bright solitons, superposed kink-bell-type and antikink-bell-type soliton profiles. The solitons arising in this nonlocal model only undergo elastic interactions while maintaining their initial identities and shifting phases. Additionally, we demonstrated the possibility of generating bound-soliton molecules and breathers with appropriately chosen soliton parameters. The results of this study offer valuable insights into the dynamics of localized nonlinear waves in higher-dimensional nonlocal nonlinear models.Comment: 22 pages, 10 figures; submitted to journa

    (2+1)-dimensional KdV, fifth-order KdV, and Gardner equations derived from the ideal fluid model. Soliton, cnoidal and superposition solutions

    Full text link
    We study the problem of gravity surface waves for an ideal fluid model in the (2+1)-dimensional case. We apply a systematic procedure to derive the Boussinesq equations for a given relation between the orders of four expansion parameters, the amplitude parameter α\alpha, the long-wavelength parameter β\beta, the transverse wavelength parameter γ\gamma, and the bottom variation parameter δ\delta. We derived the only possible (2+1)-dimensional extensions of the Korteweg-de Vries equation, the fifth-order KdV equation, and the Gardner equation in three special cases of the relationship between these parameters. All these equations are non-local. When the bottom is flat, the (2+1)-dimensional KdV equation can be transformed to the Kadomtsev-Petviashvili equation in a fixed reference frame and next to the classical KP equation in a moving frame. We have found soliton, cnoidal, and superposition solutions (essentially one-dimensional) to the (2+1)-dimensional Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation.Comment: Section 4, with soliton, cnoidal and superposition solutions to (2+1)-dimensional nonlocal KdV equation, added. In section 5 mistakes corrected. In Section 6 mistakes correcte
    corecore