1,330 research outputs found

    Local Decoders for the 2D and 4D Toric Code

    Full text link
    We analyze the performance of decoders for the 2D and 4D toric code which are local by construction. The 2D decoder is a cellular automaton decoder formulated by Harrington which explicitly has a finite speed of communication and computation. For a model of independent XX and ZZ errors and faulty syndrome measurements with identical probability we report a threshold of 0.133%0.133\% for this Harrington decoder. We implement a decoder for the 4D toric code which is based on a decoder by Hastings arXiv:1312.2546 . Incorporating a method for handling faulty syndromes we estimate a threshold of 1.59%1.59\% for the same noise model as in the 2D case. We compare the performance of this decoder with a decoder based on a 4D version of Toom's cellular automaton rule as well as the decoding method suggested by Dennis et al. arXiv:quant-ph/0110143 .Comment: 22 pages, 21 figures; fixed typos, updated Figures 6,7,8,

    Distributed Self-Concatenated Coding for Cooperative Communication

    No full text
    In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay

    Analysis and Design of Tuned Turbo Codes

    Get PDF
    It has been widely observed that there exists a fundamental trade-off between the minimum (Hamming) distance properties and the iterative decoding convergence behavior of turbo-like codes. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length, and they therefore exhibit an error floor at moderate-to-high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper, we introduce the concept of tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where asymptotic minimum distance growth rates, convergence thresholds, and code rates can be traded-off using two tuning parameters, {\lambda} and {\mu}. By decreasing {\lambda}, the asymptotic minimum distance growth rate is reduced in exchange for improved iterative decoding convergence behavior, while increasing {\lambda} raises the asymptotic minimum distance growth rate at the expense of worse convergence behavior, and thus the code performance can be tuned to fit the desired application. By decreasing {\mu}, a similar tuning behavior can be achieved for higher rate code ensembles.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Bandwidth efficient CCSDS coding standard proposals

    Get PDF
    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations
    corecore