859 research outputs found

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    Decision support for participation in electricity markets considering the transaction of services and electricity at the local level

    Get PDF
    [EN] The growing concerns regarding the lack of fossil fuels, their costs, and their impact on the environment have led governmental institutions to launch energy policies that promote the increasing installation of technologies that use renewable energy sources to generate energy. The increasing penetration of renewable energy sources brings a great fluctuation on the generation side, which strongly affects the power and energy system management. The control of this system is moving from hierarchical and central to a smart and distributed approach. The system operators are nowadays starting to consider the final end users (consumers and prosumers) as a part of the solution in power system operation activities. In this sense, the end-users are changing their behavior from passive to active players. The role of aggregators is essential in order to empower the end-users, also contributing to those behavior changes. Although in several countries aggregators are legally recognized as an entity of the power and energy system, its role being mainly centered on representing end-users in wholesale market participation. This work contributes to the advancement of the state-of-the-art with models that enable the active involvement of the end-users in electricity markets in order to become key participants in the management of power and energy systems. Aggregators are expected to play an essential role in these models, making the connection between the residential end-users, electricity markets, and network operators. Thus, this work focuses on providing solutions to a wide variety of challenges faced by aggregators. The main results of this work include the developed models to enable consumers and prosumers participation in electricity markets and power and energy systems management. The proposed decision support models consider demand-side management applications, local electricity market models, electricity portfolio management, and local ancillary services. The proposed models are validated through case studies based on real data. The used scenarios allow a comprehensive validation of the models from different perspectives, namely end-users, aggregators, and network operators. The considered case studies were carefully selected to demonstrate the characteristics of each model, and to demonstrate how each of them contributes to answering the research questions defined to this work.[ES] La creciente preocupación por la escasez de combustibles fósiles, sus costos y su impacto en el medio ambiente ha llevado a las instituciones gubernamentales a lanzar políticas energéticas que promuevan la creciente instalación de tecnologías que utilizan fuentes de energía renovables para generar energía. La creciente penetración de las fuentes de energía renovable trae consigo una gran fluctuación en el lado de la generación, lo que afecta fuertemente la gestión del sistema de potencia y energía. El control de este sistema está pasando de un enfoque jerárquico y central a un enfoque inteligente y distribuido. Actualmente, los operadores del sistema están comenzando a considerar a los usuarios finales (consumidores y prosumidores) como parte de la solución en las actividades de operación del sistema eléctrico. En este sentido, los usuarios finales están cambiando su comportamiento de jugadores pasivos a jugadores activos. El papel de los agregadores es esencial para empoderar a los usuarios finales, contribuyendo también a esos cambios de comportamiento. Aunque en varios países los agregadores están legalmente reconocidos como una entidad del sistema eléctrico y energético, su papel se centra principalmente en representar a los usuarios finales en la participación del mercado mayorista. Este trabajo contribuye al avance del estado del arte con modelos que permiten la participación activa de los usuarios finales en los mercados eléctricos para convertirse en participantes clave en la gestión de los sistemas de potencia y energía. Se espera que los agregadores desempeñen un papel esencial en estos modelos, haciendo la conexión entre los usuarios finales residenciales, los mercados de electricidad y los operadores de red. Por lo tanto, este trabajo se enfoca en brindar soluciones a una amplia variedad de desafíos que enfrentan los agregadores. Los principales resultados de este trabajo incluyen los modelos desarrollados para permitir la participación de los consumidores y prosumidores en los mercados eléctricos y la gestión de los sistemas de potencia y energía. Los modelos de soporte de decisiones propuestos consideran aplicaciones de gestión del lado de la demanda, modelos de mercado eléctrico local, gestión de cartera de electricidad y servicios auxiliares locales. Los modelos propuestos son validan mediante estudios de casos basados en datos reales. Los escenarios utilizados permiten una validación integral de los modelos desde diferentes perspectivas, a saber, usuarios finales, agregadores y operadores de red. Los casos de estudio considerados fueron cuidadosamente seleccionados para demostrar las características de cada modelo y demostrar cómo cada uno de ellos contribuye a responder las preguntas de investigación definidas para este trabajo

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process

    Customer Engagement Plans for Peak Load Reduction in Residential Smart Grids

    Full text link
    In this paper, we propose and study the effectiveness of customer engagement plans that clearly specify the amount of intervention in customer's load settings by the grid operator for peak load reduction. We suggest two different types of plans, including Constant Deviation Plans (CDPs) and Proportional Deviation Plans (PDPs). We define an adjustable reference temperature for both CDPs and PDPs to limit the output temperature of each thermostat load and to control the number of devices eligible to participate in Demand Response Program (DRP). We model thermostat loads as power throttling devices and design algorithms to evaluate the impact of power throttling states and plan parameters on peak load reduction. Based on the simulation results, we recommend PDPs to the customers of a residential community with variable thermostat set point preferences, while CDPs are suitable for customers with similar thermostat set point preferences. If thermostat loads have multiple power throttling states, customer engagement plans with less temperature deviations from thermostat set points are recommended. Contrary to classical ON/OFF control, higher temperature deviations are required to achieve similar amount of peak load reduction. Several other interesting tradeoffs and useful guidelines for designing mutually beneficial incentives for both the grid operator and customers can also be identified

    Demand Side Management In Smart Grid Optimization Using Artificial Fish Swarm Algorithm

    Get PDF
    The demand side management and their response including peak shaving approaches and motivations with shiftable load scheduling strategies advantages are the main focus of this paper. A recent real-time pricing model for regulating energy demand is proposed after a survey of literature-based demand side management techniques. Lack of user’s resources needed to change their energy consumption for the system's overall benefit. The recommended strategy involves modern system identification and administration that would enable user side load control. This might assist in balancing the demand and supply sides more effectively while also lowering peak demand and enhancing system efficiency. The AFSA and BFO algorithms are combined in this study to handle the optimization of difficult problems in a range of industries. Although the BFO will be used to exploit the search space and converge to the optimum solution, the AFSA will be used to explore the search space and retain variation. In terms of reduction of peak demand, energy consumption, and user satisfaction, the AFSA-BFO hybrid algorithm outperforms previous techniques in the field of demand side management in a smart grid context, using an AFSA. According to simulation results, the genetic algorithm successfully reduces PAR and power consumption expenses

    Optimal energy management of a microgrid system

    Get PDF
    Mestrado de dupla diplomação com École Superieure en Sciences AppliquéesA smart management strategy for the energy ows circulating in microgrids is necessary to economically manage local production and consumption while maintaining the balance between supply and demand. Finding the optimum set-points of the various generators and the best scheduling of the microgrid generators can lead to moderate and judicious use of the powers available in the microgrid. This thesis aims to apply an energy management system based on optimization algorithms to ensure the optimal control of microgrids by taking as main purpose the minimization of the energy costs and reduction of the gas emissions rate responsible for greenhouse gases. Two approaches have been proposed to nd the optimal operating setpoints. The rst one is based on a uni-objective optimization approach in which several energy management systems are implemented for three case studies. This rst approach treats the optimization problem in a uni-objective way where the two functions price and gas emission are treated separately through optimization algorithms. In this approach the used methods are simplex method, particle swarm optimization, genetic algorithm and a hybrid method (LPPSO). The second situation is based on a multiobjective optimization approach that deals with the optimization of the two functions: cost and gas emission simultaneously, the optimization algorithm used for this purpose is Pareto-search. The resulting Pareto optimal points represent di erent scheduling scenarios of the microgrid system.Uma estrat egia de gest~ao inteligente dos uxos de energia que circulam numa microrrede e necess aria para gerir economicamente a produ c~ao e o consumo local, mantendo o equil brio entre a oferta e a procura. Encontrar a melhor programa c~ao dos geradores de microrrede pode levar a uma utiliza c~ao moderada e criteriosa das pot^encias dispon veis na microrrede. Esta tese visa desenvolver um sistema de gest~ao de energia baseado em algoritmos de otimiza c~ao para assegurar o controlo otimo das microrredes, tendo como objetivo principal a minimiza c~ao dos custos energ eticos e a redu c~ao da taxa de emiss~ao de gases respons aveis pelo com efeito de estufa. Foram propostas duas estrat egias para encontrar o escalonamento otimo para funcionamento. A primeira baseia-se numa abordagem de otimiza c~ao uni-objetivo no qual v arios sistemas de gest~ao de energia s~ao implementados para tr^es casos de estudo. Neste caso o problema de otimiza c~ao e baseado na fun c~ao pre co e na fun c~ao emiss~ao de gases. Os m etodos de otimiza c~ao utilizados foram: algoritmo simplex, algoritmos gen eticos, particle swarm optimization e m etodo h brido (LP-PSO). A segunda situa c~ao baseia-se numa abordagem de otimiza c~ao multi-objetivo que trata a otimiza c~ao das duas fun c~oes: custo e emiss~ao de gases em simult^aneo. O algoritmo de otimiza c~ao utilizado para este m foi a Procura de Pareto. Os pontos otimos de Pareto resultantes representam diferentes cen arios de programa c~ao do sistema de microrrede
    corecore