126 research outputs found

    Occlusion reasoning for multiple object visual tracking

    Full text link
    Thesis (Ph.D.)--Boston UniversityOcclusion reasoning for visual object tracking in uncontrolled environments is a challenging problem. It becomes significantly more difficult when dense groups of indistinguishable objects are present in the scene that cause frequent inter-object interactions and occlusions. We present several practical solutions that tackle the inter-object occlusions for video surveillance applications. In particular, this thesis proposes three methods. First, we propose "reconstruction-tracking," an online multi-camera spatial-temporal data association method for tracking large groups of objects imaged with low resolution. As a variant of the well-known Multiple-Hypothesis-Tracker, our approach localizes the positions of objects in 3D space with possibly occluded observations from multiple camera views and performs temporal data association in 3D. Second, we develop "track linking," a class of offline batch processing algorithms for long-term occlusions, where the decision has to be made based on the observations from the entire tracking sequence. We construct a graph representation to characterize occlusion events and propose an efficient graph-based/combinatorial algorithm to resolve occlusions. Third, we propose a novel Bayesian framework where detection and data association are combined into a single module and solved jointly. Almost all traditional tracking systems address the detection and data association tasks separately in sequential order. Such a design implies that the output of the detector has to be reliable in order to make the data association work. Our framework takes advantage of the often complementary nature of the two subproblems, which not only avoids the error propagation issue from which traditional "detection-tracking approaches" suffer but also eschews common heuristics such as "nonmaximum suppression" of hypotheses by modeling the likelihood of the entire image. The thesis describes a substantial number of experiments, involving challenging, notably distinct simulated and real data, including infrared and visible-light data sets recorded ourselves or taken from data sets publicly available. In these videos, the number of objects ranges from a dozen to a hundred per frame in both monocular and multiple views. The experiments demonstrate that our approaches achieve results comparable to those of state-of-the-art approaches

    Tracking-Reconstruction or Reconstruction-Tracking?

    Full text link
    We developed two methods for tracking multiple objects using several camera views. The methods use the Multiple Hypothesis Tracking (MHT) framework to solve both the across-view data association problem (i.e., finding object correspondences across several views) and the across-time data association problem (i.e., the assignment of current object measurements to previously established object tracks). The "tracking-reconstruction method" establishes two-dimensional (2D) objects tracks for each view and then reconstructs their three-dimensional (3D) motion trajectories. The "reconstruction-tracking method" assembles 2D object measurements from all views, reconstructs 3D object positions, and then matches these 3D positions to previously established 3D object tracks to compute 3D motion trajectories. For both methods, we propose techniques for pruning the number of association hypotheses and for gathering track fragments. We tested and compared the performance of our methods on thermal infrared video of bats using several performance measures. Our analysis of video sequences with different levels of densities of flying bats reveals that the reconstruction-tracking method produces fewer track fragments than the tracking-reconstruction method but creates more false positive 3D tracks

    Track-oriented multiple hypothesis tracking based on Tabu search and Gibbs sampling

    Get PDF
    In order to circumvent the curse of dimensionality in multiple hypothesis tracking data association, this paper proposes two efficient implementation algorithms using Tabu search and Gibbs sampling. As the first step, we formulate the problem of generating the best global hypothesis in multiple hypothesis tracking as the problem of finding a maximum weighted independent set of a weighted undirected graph. Then, the metaheuristic Tabu search with two basic movements is designed to find the global optimal solution of the problem formulated. To improve the computational efficiency, this paper also develops a sampling based algorithm based on Gibbs sampling. The problem formulated for the Tabu search-based algorithm is reformulated as a maximum product problem to enable the implementation of Gibbs sampling. The detailed algorithm is then designed and the convergence is also theoretically analyzed. The performance of the two algorithms proposed are verified through numerical simulations and compared with that of a mainstream multiple dimensional assignment implementation algorithm. The simulation results confirm that the proposed algorithms significantly improve the computational efficiency while maintaining or even enhancing the tracking performance

    Mediating Human-Robot Collaboration through Mixed Reality Cues

    Get PDF
    abstract: This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A vision-based object tracking algorithm is used to precisely determine the pose and state of physical objects in and around the workspace. A projection mapping technique is used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking and projection onto objects enables the system to provide just-in-time instructions for carrying out a procedural task. Additionally, the system can also inform and warn humans about the intentions of the robot and safety of the workspace. It was hypothesized that using this system for executing a human-robot collaborative task will improve the overall performance of the team and provide a positive experience to the human partner. To test this hypothesis, an experiment involving human subjects was conducted and the performance (both objective and subjective) of the presented system was compared with a conventional method based on printed instructions. It was found that projecting visual cues enabled human subjects to collaborate more effectively with the robot and resulted in higher efficiency in completing the task.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A Mechanical Hand-Tracking System with Tactile Feedback Designed for Telemanipulation

    Get PDF
    : In this paper, we present a mechanical hand-tracking system with tactile feedback designed for fine manipulation in teleoperation scenarios. Alternative tracking methods based on artificial vision and data gloves have become an asset for virtual reality interaction. Yet, occlusions, lack of precision, and the absence of effective haptic feedback beyond vibrotactile still appear as a limit for teleoperation applications. In this work, we propose a methodology to design a linkage mechanism for hand pose tracking purposes, preserving complete finger mobility. Presentation of the method is followed by design and implementation of a working prototype, and by evaluation of the tracking accuracy using optical markers. Moreover, a teleoperation experiment involving a dexterous robotic arm and hand was proposed to ten participants. It investigated the effectiveness and repeatability of the hand tracking with combined haptic feedback during a proposed pick and place manipulation tasks

    최대 가중 클릭 문제의 동적 생성법을 이용한 온라인 다중 카메라 다중 물체 추적 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 최진영.In this dissertation, we propose an online and real-time algorithm for tracking of multiple targets with multiple cameras that have overlapping field of views. Because of its applicability, multiple target tracking with a visual sensor has been studied intensively during the recent decades. Especially, algorithms using multiple overlapping cameras have been proposed to overcome the occlusion and missing problem of target that cannot be resolved by a single camera. Since the multiple camera multiple target tracking (MCMTT) problem is more complicated than the single camera multiple target tracking (SCMTT) problem, most of MCMTT algorithms are based on a batch process which considers a whole sequence at a time. Although the batch-based algorithms have been achieved the robust performance, their usability is limited because many practical applications need an instantaneous result. The objective of this dissertation is to develop an online MCMTT algorithm that has compatible tracking performance compared to the batch-based algorithms, but requires a small amount of computations. The proposed algorithm generates track hypotheses (or simply called `track') with all possible data associations between object detections from multiple cameras through frames. Then, it picks a set of tracks that best describes the tracking of targets. To identify a good track, the quality of each track is measured by our score function. The tracking solution is, then, a set of tracks that has the maximum total score. To get the solution, we formulate the problem of finding those track set as the maximum weighted clique problem (MWCP), which is one of the widely adopted formulations for a combinatorial problem that has the pairwise compatibility relationship among the variables. MWCP is well-known NP-complete problem and its worst-case computation time is proportional to the exponent of the number of tracks. Thus, solving MWCP is intractable because the number of candidate tracks exponentially increases when the tracking progresses. To alleviate the huge computational load, we propose an online scheme that dynamically formates multiple MWCPs with small-sized subsets of candidate tracks in every frame. The scheme is motivated by that the tracking solutions from consecutive frames are very similar because the status of each target is not abruptly changed between one frame. When we assume that a specific track set is an actual solution of the previous frame, only a small number of tracks have a possibility to become a solution track of the current frame. Thus, we can narrow down the size of candidate track set with the previous solution. However, propagating only the best solution of each frame can cause irreducible error when a wrong track set is chosen as the solution because of the tracking ambiguity. To hedge the risk of this error, we find multiple good solutions at each frame and propagate the K-best solutions among them to the next frame instead of a single solution. When the candidate tracks are updated and generated with newly obtained detections at the next frame, we generate multiple subsets of the entire candidate tracks with the K-best previous solutions. Each subset consists of candidate solution tracks with respect to each of the previous solutions, and a small-sized MWCP is formated with the subset. Then, our algorithm finds multiple solutions from each MWCP and repeats above procedures until the tracking is terminated. Even the proposed algorithm solves multiple MWCPs, it has lower computational complexity than solving a single MWCP with the entire candidate tracks because the overall computational load is mainly affected by the size of the largest MWCP. Moreover, when an instantaneous result is demanded, our algorithm finds better solution than solving a single large-sized MWCP because it finds more diverse solutions under a limited solving time. Although our dynamic formulation remarkably moderates the overall computational complexity, it is still challenging to satisfy the real-time capability of the tracking system. Thus, we apply three more strategies to reduce the computation time. First, we generate tracklets, robust fragments of a target's trajectory, at each camera and generate candidate tracks with those tracklets instead of detections. This prevents a generation of many absurd tracks. Second, we adopt a heuristic algorithm called a breakout local search (BLS) to solve each MWCP. With BLS, multiple suboptimal solutions can be found efficiently within a short time. Last, we prune the candidate tracks with a probability that is calculated with the K-best solutions. The probability represents the quality of each track with respect to the overall tracking situation instead of an individual track. Thus, utilizing this probability ensures a proper pruning of candidate tracks. In the experiments with a public benchmark dataset, our algorithm shows the compatible performance compared to the state-of-the-art batch-based MCMTT algorithms. Moreover, our algorithm shows a real-time capability by achieving a satisfactory performance within a reasonable computation time. We also conduct a self-comparison to verify our dynamic MWCP formation with respect to the tracking performance and solving time. When a sufficient number of solutions are propagated, our algorithm performs better and takes shorter time than solving a single MWCP considering the entire candidate tracks.Chapter 1 Introduction 1 1.1 Background 1 1.2 Related Works 3 1.2.1 Reconstruction-and-tracking methods 4 1.2.2 Tracking-and-reconstruction methods 6 1.2.3 Unified frameworks 7 1.3 Contents of the Research 8 1.4 Thesis Organization 11 Chapter 2 Preliminaries 13 2.1 Bayesian Tracking 14 2.1.1 Recursive Bayesian Tracking 16 2.1.2 Bayesian Tracking for Multiple Targets 17 2.1.3 Multiple Hypothesis Tracking (MHT) 19 2.2 Maximum Weighted Clique Problem (MWCP) 24 2.2.1 Clique Problems 24 2.2.2 Solving MWCP 26 2.3 Breakout Local Search (BLS) 27 2.3.1 Solution exploration 28 2.3.2 Perturbation Strategies 30 2.3.3 Initial Solution and Termination Condition 32 Chapter 3 Proposed Approach 35 3.1 Problem Statements 35 3.2 Tracklet Generation 40 3.2.1 Detection-to-tracklet Matching 43 3.2.2 Matching Score with Motion Estimation 46 3.2.3 Matching Validation 49 3.3 Track Hypothesis 51 3.3.1 Tracklet Association 51 3.3.2 Online Generation of Association Sets 55 3.3.3 Track Generation 57 3.3.4 Track Score 59 3.4 Global Hypothesis 64 3.4.1 MWCP for MCMTT 65 3.4.2 BLS for MCMTT 69 3.5 Pruning 70 3.5.1 Approximated Global Track Probability 71 3.5.2 Track Pruning Scheme 72 Chapter 4 Experiments 75 4.1 Comparison with the State-of-the-art Methods 81 4.2 Influence of Parameters 84 4.3 Score Function Analysis 87 4.4 Solving Scheme Analysis 88 4.5 Qualitative Results 90 Chapter 5 Concluding Remarks 97 5.1 Conclusions 97 5.2 Future Works 98 초록 117Docto

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application
    corecore