106 research outputs found

    Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics

    Get PDF
    Due to growing security concerns, video surveillance and monitoring has received an immense attention from both federal agencies and private firms. The main concern is that a single camera, even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A more general solution with wide range of applications is to allow the deployed cameras to have a non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D space. This thesis addresses the issue of how cameras in such a network can be calibrated and how the network as a whole can be calibrated, such that each camera as a unit in the network is aware of its orientation with respect to all the other cameras in the network. Different types of cameras might be present in a multiple camera network and novel techniques are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track the shadows on the ground plane cast by at least two unknown stationary points, and utilize the tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical method is proposed for its self-calibration which even allows it to change its internal parameters by zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique is presented that uses only two images to estimate five camera parameters. For an automatically configurable multi-camera network, having non-overlapping field of view and possibly containing moving cameras, a practical framework is proposed that determines the geometry of such a dynamic camera network. It is shown that only one automatically computed vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to infer the geometry of a dynamic network. Our method generalizes previous work which considers restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate promising results on synthetic as well as on real data. Applications to path modeling, GPS coordinate estimation, and configuring mixed-reality environment are explored

    Real-time acquisition of multi-view face images to support robust face recognition using a wireless camera network

    Get PDF
    Recent terror attacks, intrusion attempts and criminal activities have necessitated a transition to modern biometric systems that are capable of identifying suspects in real time. But real-time biometrics is challenging given the computationally intensive nature of video processing and the potential occlusions and variations in pose of a subject in an unconstrained environment. The objective of this dissertation is to utilize the robustness and parallel computational abilities of a distributed camera network for fast and robust face recognition.;In order to support face recognition using a camera network, a collaborative middle-ware service is designed that enables the rapid extraction of multi-view face images of multiple subjects moving through a region. This service exploits the epipolar geometry between cameras to speed up multi view face detection rates. By quickly detecting face images within the network, labeling the pose of each face image, filtering them based on their suitability of recognition and transmitting only the resultant images to a base station for recognition, both the required network bandwidth and centralized processing overhead are reduced. The performance of the face image acquisition system is evaluated using an embedded camera network that is deployed in indoor environments that mimic walkways in public places. The relevance of the acquired images for recognition is evaluated by using a commercial software for matching acquired probe images. The experimental results demonstrate significant improvement in face recognition system performance over traditional systems as well as increase in multi-view face detection rate over purely image processing based approaches
    • …
    corecore