995 research outputs found

    Space for Two to Think: Large, High-Resolution Displays for Co-located Collaborative Sensemaking

    Get PDF
    Large, high-resolution displays carry the potential to enhance single display groupware collaborative sensemaking for intelligence analysis tasks by providing space for common ground to develop, but it is up to the visual analytics tools to utilize this space effectively. In an exploratory study, we compared two tools (Jigsaw and a document viewer), which were adapted to support multiple input devices, to observe how the large display space was used in establishing and maintaining common ground during an intelligence analysis scenario using 50 textual documents. We discuss the spatial strategies employed by the pairs of participants, which were largely dependent on tool type (data-centric or function-centric), as well as how different visual analytics tools used collaboratively on large, high-resolution displays impact common ground in both process and solution. Using these findings, we suggest design considerations to enable future co-located collaborative sensemaking tools to take advantage of the benefits of collaborating on large, high-resolution displays

    Entry and access : how shareability comes about

    Get PDF
    Shareability is a design principle that refers to how a system, interface, or device engages a group of collocated, co-present users in shared interactions around the same content (or the same object). This is broken down in terms of a set of components that facilitate or constrain the way an interface (or product) is made shareable. Central are the notions of access points and entry points. Entry points invite and entice people into engagement, providing an advance overview, minimal barriers, and a honeypot effect that draws observers into the activity. Access points enable users to join a group's activity, allowing perceptual and manipulative access and fluidity of sharing. We show how these terms can be useful for informing analysis and empirical research

    Groupware design : principles, prototypes, and systems

    Get PDF
    Computers are valuable tools for a wide range of work tasks. A substantial limitation on their value, however, is the predominant focus on enhancing the work of individuals. This fails to account for the issues of collaboration that affect almost all work. Research into computer supported cooperative work (CSCW) aims to eliminate this deficiency, but the promise of computer systems for group work has not been met. This thesis presents four design principles that promote the development of successful groupware. The principles identify the particular problems encountered by groupware, and provide guidelines and strategies to avoid, overcome, or minimise their impact. Derived from several sources, the major influence on the principles development is an investigation into the relationship between factors affecting groupware failure. They are stimulated by observations of groupware use, and by design insights arising from the development of two groupware applications and their prototypes: Mona and TELEFREEK. Mona provides conversation-based email management. Several groupware applications allow similar functionality, but the design principles result in Mona using different mechanisms to achieve its user-support. TELEFREEK provides a platform for accessing computer-supported communication and collaboration facilities. It attends to the problems of initiating interaction, and supports an adaptable and extendible set of "social awareness" assistants. TELEFREEK offers a broader range of facilities than other groupware, and avoids the use of prohibitively high-bandwidth communication networks. TELEFREEK demonstrates that much can be achieved through current and widely accessible technology. Together, Mona and TELEFREEK forcefully demonstrate the use of the design principles, and substantiate the claim of their utility

    Easing the writing task: designing computer based systems to help authors

    Get PDF
    An increasing number of people interact not only with computers, but through computers. Interaction between people through computers to complete work tasks is termed Computer Supported Cooperative Work (CSCW). The scope of activities supported by CSCW systems is described, and CSCW systems which support communication, meetings and writing are discussed. More specifically, the potential for improved computer support of the writing task is investigated. It is concluded that models of the writing task and writers are not yet sufficiently accurate to be embedded in normative computer programs or systems; individual writers and writing tasks are extremely varied. Leading on from the studies of both existing systems and writing theories, requirements for generic CSCW systems, single author support systems and multiple author support systems are presented. The design of CSCW systems which support asynchronous collaborative authoring of structured documents is investigated in this thesis. A novel approach to design and implementation of such systems is described and discussed. This thesis then describes MILO, a system that does not feature embedded models of writers or the writing task. In fact, MILO attempts to minimize constraints on the activities of collaborating authors and on the structure of documents. Hence with MILO, roles of participants are determined by social processes, and the presentational structure of documents is imposed at the end of the writing process. It is argued that this approach results in a workable, practical and useful design, substantiating the view that 'minimally-constrained' CSCW systems, of which MILO is an example, will be successful. It is shown that MILO successfully meets the stated requirements, and that it compares favourably with existing collaborative writing systems along several dimensions. The limitations of work presented in the thesis are discussed, leading to suggestions for future work which will remedy deficiencies and extend the work which has been undertaken. The nature of this thesis's contribution to CSCW in general, computer supported collaborative writing, and Human Computer Interaction (HCI) is discussed

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    Equal opportunities: Do shareable interfaces promote more group participation than single users displays?

    Get PDF
    Computers designed for single use are often appropriated suboptimally when used by small colocated groups working together. Our research investigates whether shareable interfaces–that are designed for more than one user to inter-act with–can facilitate more equitable participation in colocated group settings compared with single user displays. We present a conceptual framework that characterizes Shared Information Spaces (SISs) in terms of how they constrain and invite participation using different entry points. An experiment was conducted that compared three different SISs: a physical-digital set-up (least constrained), a multitouch tabletop (medium), and a laptop display (most constrained). Statistical analyses showed there to be little difference in participation levels between the three conditions other than a predictable lack of equity of control over the interface in the laptop condition. However, detailed qualitative analyses revealed more equitable participation took place in the physical-digital condition in terms of verbal utterances over time. Those who spoke the least contributed most to the physical design task. The findings are discussed in relation to the conceptual framework and, more generally, in terms of how to select, design, and combine different display technologies to support collaborative activities
    • …
    corecore