30,189 research outputs found

    Hybrid intelligent deep kernel incremental extreme learning machine based on differential evolution and multiple population grey wolf optimization methods

    Get PDF
    Focussing on the problem that redundant nodes in the kernel incremental extreme learning machine (KI-ELM) which leads to ineffective iteration increase and reduce the learning efficiency, a novel improved hybrid intelligent deep kernel incremental extreme learning machine (HI-DKIELM) based on a hybrid intelligent algorithms and kernel incremental extreme learning machine is proposed. At first, hybrid intelligent algorithms are proposed based on differential evolution (DE) and multiple population grey wolf optimization (MPGWO) methods which used to optimize the hidden layer neuron parameters and then to determine the effective hidden layer neurons number. The learning efficiency of the algorithm is improved by reducing the network complexity. Then, we bring in the deep network structure to the kernel incremental extreme learning machine to extract the original input data layer by layer gradually. The experiment results show that the HI-DKIELM methods proposed in this paper with more compact network structure have higher prediction accuracy and better ability of generation compared with other ELM methods

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Neural Class-Specific Regression for face verification

    Get PDF
    Face verification is a problem approached in the literature mainly using nonlinear class-specific subspace learning techniques. While it has been shown that kernel-based Class-Specific Discriminant Analysis is able to provide excellent performance in small- and medium-scale face verification problems, its application in today's large-scale problems is difficult due to its training space and computational requirements. In this paper, generalizing our previous work on kernel-based class-specific discriminant analysis, we show that class-specific subspace learning can be cast as a regression problem. This allows us to derive linear, (reduced) kernel and neural network-based class-specific discriminant analysis methods using efficient batch and/or iterative training schemes, suited for large-scale learning problems. We test the performance of these methods in two datasets describing medium- and large-scale face verification problems.Comment: 9 pages, 4 figure
    • …
    corecore