22,862 research outputs found

    Local symplectic field theory

    Full text link
    Generalizing local Gromov-Witten theory, in this paper we define a local version of symplectic field theory. When the symplectic manifold with cylindrical ends is four-dimensional and the underlying simple curve is regular by automatic transversality, we establish a transversality result for all its multiple covers and discuss the resulting algebraic structures

    Enumeration of paths and cycles and e-coefficients of incomparability graphs

    Full text link
    We prove that the number of Hamiltonian paths on the complement of an acyclic digraph is equal to the number of cycle covers. As an application, we obtain a new expansion of the chromatic symmetric function of incomparability graphs in terms of elementary symmetric functions. Analysis of some of the combinatorial implications of this expansion leads to three bijections involving acyclic orientations

    Gravitational descendants in symplectic field theory

    Full text link
    It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic manifold. In this paper we generalize the definition of gravitational descendants in SFT from circle bundles in the Morse-Bott case to general contact manifolds. After we have shown that for the basic examples of holomorphic curves in SFT, that is, branched covers of cylinders over closed Reeb orbits, the gravitational descendants have a geometric interpretation in terms of branching conditions, we compute the corresponding sequences of Poisson-commuting functions when the contact manifold is the unit cotangent bundle of a Riemannian manifold.Comment: 44 pages, no figure

    Approximation Algorithms for Multi-Criteria Traveling Salesman Problems

    Full text link
    In multi-criteria optimization problems, several objective functions have to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as the optimal solution. Instead, the aim is to compute a so-called Pareto curve of solutions. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them. We design a deterministic polynomial-time algorithm for multi-criteria g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate Pareto curves for all 1/2<=g<=1. In particular, we obtain a (2+eps)-approximation for multi-criteria metric STSP. We also present two randomized approximation algorithms for multi-criteria g-metric STSP that achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1 +3g -4g^2) + eps, respectively. Moreover, we present randomized approximation algorithms for multi-criteria g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do this, we design randomized approximation schemes for multi-criteria cycle cover and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006
    • …
    corecore