340 research outputs found

    Effects of additive noise on the stability of glacial cycles

    Full text link
    It is well acknowledged that the sequence of glacial-interglacial cycles is paced by the astronomical forcing. However, how much is the sequence robust against natural fluctuations associated, for example, with the chaotic motions of atmosphere and oceans? In this article, the stability of the glacial-interglacial cycles is investigated on the basis of simple conceptual models. Specifically, we study the influence of additive white Gaussian noise on the sequence of the glacial cycles generated by stochastic versions of several low-order dynamical system models proposed in the literature. In the original deterministic case, the models exhibit different types of attractors: a quasiperiodic attractor, a piecewise continuous attractor, strange nonchaotic attractors, and a chaotic attractor. We show that the combination of the quasiperiodic astronomical forcing and additive fluctuations induce a form of temporarily quantised instability. More precisely, climate trajectories corresponding to different noise realizations generally cluster around a small number of stable or transiently stable trajectories present in the deterministic system. Furthermore, these stochastic trajectories may show sensitive dependence on very small amounts of perturbations at key times. Consistently with the complexity of each attractor, the number of trajectories leaking from the clusters may range from almost zero (the model with a quasiperiodic attractor) to a significant fraction of the total (the model with a chaotic attractor), the models with strange nonchaotic attractors being intermediate. Finally, we discuss the implications of this investigation for research programmes based on numerical simulators. }Comment: Parlty based on a lecture given by M. Crucifix at workshop held in Rome in 2013 as a part of Mathematics of Planet Earth 201

    Results on Discrete-Time, Decision-Directed Integrated Detection, Estimation, and Identification

    Get PDF
    ©1977 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.New results are presented for symbol-by-symbol detection with decision-directed tracking of colored channel disturbances. Recursive sampled-data algorithms are shown for Maximum A Posteriori Probability of detection under colored additive and multiplicative Gaussian noises along with white Gaussian noise. Preliminary evaluation of the algorithms via Monte Carlo simulation shows good performance compared to standard white-noise only algorithms.IEEE Communications Societ

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Array Processing: Underwater Acoustic Source Localization

    Get PDF

    Super-resolution time delay estimation in multipath environments

    Get PDF
    The problem of super-resolution time delay estimation in multipath environments is addressed in this paper. Two cases, active and passive systems, are considered. The time delay estimation is first converted into a sinusoidal parameter estimation problem. Then the sinusoidal parameters are estimated by generalizing the Multiple Signal Classification (MUSIC) algorithm for single-experiment data. The proposed method, referred to as the MUSIC-type algorithm, approximates the Cramer-Rao bound (CRB) in terms of the mean square errors (MSEs) for different signal-to-noise ratios (SNRs) and separations of muitipath components. Simulation results show that the MUSIC-type algorithm performs better than the classical correlation approach and the conventional MUSIC method for the closely spaced components in muitipath environments.published_or_final_versio
    corecore