205 research outputs found

    Sequence-based Anytime Control

    Full text link
    We present two related anytime algorithms for control of nonlinear systems when the processing resources available are time-varying. The basic idea is to calculate tentative control input sequences for as many time steps into the future as allowed by the available processing resources at every time step. This serves to compensate for the time steps when the processor is not available to perform any control calculations. Using a stochastic Lyapunov function based approach, we analyze the stability of the resulting closed loop system for the cases when the processor availability can be modeled as an independent and identically distributed sequence and via an underlying Markov chain. Numerical simulations indicate that the increase in performance due to the proposed algorithms can be significant.Comment: 14 page

    Experiments in dynamic control of autonomous marine vehicles using acoustic modems

    Get PDF
    Marine robots are an increasingly attractive means for observing and monitoring in the ocean, but underwater acoustic communication (“acomms”) remains a major challenge, especially for real-time control. Packet loss occurs widely, bit rates are low, and there are significant delays. We consider here strategies for feedback control with acomms links in either the sensor-controller channel, or the controller-actuator channel. On the controller-actuator side we implement sparse packetized predictive control (S-PPC), which simultaneously addresses packet-loss and the data rate limit. For the sensor-controller channel we study a modified information filter (MIF) in a Linear Quadratic Gaussian (LQG) control scheme. Field experiments were carried out with both approaches, regulating crosstrack error in a robotic kayak using acomms. Outcomes with both the S-PPC and MIF LQG confirm that good performance is achievable.United States. Office of Naval Research (Grant N00014-09-1-0700)National Science Foundation (U.S.) (Contract CNS-1212597)Finmeccanic

    Trade-offs Between Performance, Data Rate and Transmission Delay in Networked Control Systems

    Get PDF

    Stabilizing Error Correction Codes for Controlling LTI Systems over Erasure Channels

    Get PDF
    We propose (k,k') stabilizing codes, which is a type of delayless error correction codes that are useful for control over networks with erasures. For each input symbol, k output symbols are generated by the stabilizing code. Receiving any k' of these outputs guarantees stability. Thus, the system to be stabilized is taken into account in the design of the erasure codes. Our focus is on LTI systems, and we construct codes based on independent encodings and multiple descriptions. The theoretical efficiency and performance of the codes are assessed, and their practical performances are demonstrated in a simulation study. There is a significant gain over other delayless codes such as repetition codes.Comment: Accepted and presented at the IEEE 60th Conference on Decision and Control (CDC). arXiv admin note: substantial text overlap with arXiv:2112.1171

    Interplay Between Transmission Delay, Average Data Rate, and Performance in Output Feedback Control over Digital Communication Channels

    Full text link
    The performance of a noisy linear time-invariant (LTI) plant, controlled over a noiseless digital channel with transmission delay, is investigated in this paper. The rate-limited channel connects the single measurement output of the plant to its single control input through a causal, but otherwise arbitrary, coder-controller pair. An infomation-theoretic approach is utilized to analyze the minimal average data rate required to attain the quadratic performance when the channel imposes a known constant delay on the transmitted data. This infimum average data rate is shown to be lower bounded by minimizing the directed information rate across a set of LTI filters and an additive white Gaussian noise (AWGN) channel. It is demonstrated that the presence of time delay in the channel increases the data rate needed to achieve a certain level of performance. The applicability of the results is verified through a numerical example. In particular, we show by simulations that when the optimal filters are used but the AWGN channel (used in the lower bound) is replaced by a simple scalar uniform quantizer, the resulting operational data rates are at most around 0.3 bits above the lower bounds.Comment: A less-detailed version of this paper has been accepted for publication in the proceedings of ACC 201

    On Multiple Description Coding of Sources with Memory

    Full text link

    Optimal Sequence-Based Control of Networked Linear Systems

    Get PDF
    In Networked Control Systems (NCS), components of a control loop are connected by data networks that may introduce time-varying delays and packet losses into the system, which can severly degrade control performance. Hence, this book presents the newly developed S-LQG (Sequence-Based Linear Quadratic Gaussian) controller that combines the sequence-based control method with the well-known LQG approach to stochastic optimal control in order to compensate for the network-induced effects
    corecore