755 research outputs found

    A Scalable Multiple Description Scheme for 3D Video Coding Based on the Interlayer Prediction Structure

    Get PDF
    The most recent literature indicates multiple description coding (MDC) as a promising coding approach to handle the problem of video transmission over unreliable networks with different quality and bandwidth constraints. Furthermore, following recent commercial availability of autostereoscopic 3D displays that allow 3D visual data to be viewed without the use of special headgear or glasses, it is anticipated that the applications of 3D video will increase rapidly in the near future. Moving from the concept of spatial MDC, in this paper we introduce some efficient algorithms to obtain 3D substreams that also exploit some form of scalability. These algorithms are then applied to both coded stereo sequences and to depth image-based rendering (DIBR). In these algorithms, we first generate four 3D subsequences by subsampling, and then two of these subsequences are jointly used to form each of the two descriptions. For each description, one of the original subsequences is predicted from the other one via some scalable algorithms, focusing on the inter layer prediction scheme. The proposed algorithms can be implemented as pre- and postprocessing of the standard H.264/SVC coder that remains fully compatible with any standard coder. The experimental results presented show that these algorithms provide excellent results

    Video transmission over a relay channel with a compress-forward code design

    Get PDF
    There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios

    SVCEval-RA: an evaluation framework for adaptive scalable video streaming

    Full text link
    [EN] Multimedia content adaption strategies are becoming increasingly important for effective video streaming over the actual heterogeneous networks. Thus, evaluation frameworks for adaptive video play an important role in the designing and deploying process of adaptive multimedia streaming systems. This paper describes a novel simulation framework for rate-adaptive video transmission using the Scalable Video Coding standard (H.264/SVC). Our approach uses feedback information about the available bandwidth to allow the video source to select the most suitable combination of SVC layers for the transmission of a video sequence. The proposed solution has been integrated into the network simulator NS-2 in order to support realistic network simulations. To demonstrate the usefulness of the proposed solution we perform a simulation study where a video sequence was transmitted over a three network scenarios. The experimental results show that the Adaptive SVC scheme implemented in our framework provides an efficient alternative that helps to avoid an increase in the network congestion in resource-constrained networks. Improvements in video quality, in terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) are also obtained.Castellanos Hernández, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2017). SVCEval-RA: an evaluation framework for adaptive scalable video streaming. Multimedia Tools and Applications. 76(1):437-461. doi:10.1007/s11042-015-3046-yS437461761Akhshabi S, Begen AC, Dovrolis C (2011) An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In: Proceedings of the second annual ACM conference on Multimedia systems. ACM, pp 157–168Alabdulkarim MN, Rikli N-E (2012) QoS Provisioning for H.264/SVC Streams over Ad-Hoc ZigBee Networks Using Cross-Layer Design. In: 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). pp 1–8Birkos K, Tselios C, Dagiuklas T, Kotsopoulos S (2013) Peer selection and scheduling of H. 264 SVC video over wireless networks. In: Wireless Communications and Networking Conference (WCNC), 2013 IEEE. pp 1633–1638Castellanos W (2014) SVCEval-RA - An Evaluation Framework for Adaptive Scalable Video Streaming. In: SourceForge Project. http://sourceforge.net/projects/svceval-ra/ . Accessed 1 May 2015Castellanos W, Guerri JC, Arce P (2015) A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Comput Commun. http://dx.doi.org/10.1016/j.comcom.2015.08.012Castellanos W, Arce P, Acelas P, Guerri JC (2012) Route Recovery Algorithm for QoS-Aware Routing in MANETs. Springer Berlin Heidelberg, Bilbao, pp. 81–93Chikkerur S, Sundaram V, Reisslein M, Karam LJ (2011) Objective video quality assessment methods: A classification, review, and performance comparison. Broadcast, IEEE Trans on 57:165–182Choupani R, Wong S, Tolun M (2014) Multiple description coding for SNR scalable video transmission over unreliable networks. Multimed Tools Appl 69:843–858. doi: 10.1007/s11042-012-1150-9CISCO Corp. (2014) Cisco Visual Networking Index Forecast and Methodology. In: White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.Dai M, Zhang Y, Loguinov D (2009) A unified traffic model for MPEG-4 and H. 264 video traces. IEEE Trans Multimedia 11:1010–1023Detti A, Bianchi G, Pisa C, et al. (2009) SVEF: an open-source experimental evaluation framework for H.264 scalable video streaming. In: IEEE Symposium on Computers and Communications. pp 36–41Espina F, Morato D, Izal M, Magaña E (2014) Analytical model for MPEG video frame loss rates and playback interruptions on packet networks. Multimed Tools Appl 72:361–383. doi: 10.1007/s11042-012-1344-1Fiems D, Steyaert B, Bruneel H (2012) A genetic approach to Markovian characterisation of H.264 scalable video. Multimedia Tools Appl 58:125–146Floyd S, Handley M, Kohler E Datagram Congestion Control Protocol (DCCP). http://tools.ietf.org/html/rfc4340 . Accessed 17 Feb 2014Floyd S, Padhye J, Widmer J TCP Friendly Rate Control (TFRC): Protocol Specification. http://tools.ietf.org/html/rfc5348 . Accessed 17 Feb 2014Fraz M, Malkani YA, Elahi MA (2009) Design and implementation of real time video streaming and ROI transmission system using RTP on an embedded digital signal processing (DSP) platform. In: 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009. pp 1–6ISO/IEC (2014) Information technology - Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation description and segment formats.ITU-T (2013) Rec. H.264 & ISO/IEC 14496-10 AVC. Advanced Video Coding for Generic Audiovisual Services.Ivrlač MT, Choi LU, Steinbach E, Nossek JA (2009) Models and analysis of streaming video transmission over wireless fading channels. Signal Process Image Commun 24:651–665. doi: 10.1016/j.image.2009.04.005Karki R, Seenivasan T, Claypool M, Kinicki R (2010) Performance Analysis of Home Streaming Video Using Orb. In: Proceedings of the 20th International Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM, New York, NY, USA, pp 111–116Ke C-H (2012) myEvalSVC-an Integrated Simulation Framework for Evaluation of H. 264/SVC Transmission. KSII Trans Internet Inf Syst (TIIS) 6:377–392. doi: 10.3837/tiis.2012.01.021Ke C-H, Shieh C-K, Hwang W-S, Ziviani A (2008) An Evaluation Framework for More Realistic Simulations of MPEG Video Transmission. J Inf Sci Eng 24:425–440Klaue J, Rathke B, Wolisz A (2003) Evalvid–A framework for video transmission and quality evaluation. In: Computer Performance Evaluation. Modelling Techniques and Tools. Springer, pp 255–272Le TA, Nguyen H (2014) End-to-end transmission of scalable video contents: performance evaluation over EvalSVC—a new open-source evaluation platform. Multimed Tools Appl 72:1239–1256. doi: 10.1007/s11042-013-1444-6Lie A, Klaue J (2008) Evalvid-RA: trace driven simulation of rate adaptive MPEG-4 VBR video. Multimedia Systems 14:33–50. doi: 10.1007/s00530-007-0110-0Moving Pictures Experts Group and ITU-T Video Coding Experts Group (2011) H. 264/SVC reference software (JSVM 9.19.14) and Manual.Nightingale J, Wang Q, Grecos C (2014) Empirical evaluation of H.264/SVC streaming in resource-constrained multihomed mobile networks. Multimed Tools Appl 70:2011–2035. doi: 10.1007/s11042-012-1219-5Parmar H, Thornburgh M (2012) Real-Time Messaging Protocol (RTMP) Specification. AdobePolitis I, Dounis L, Dagiuklas T (2012) H. 264/SVC vs. H. 264/AVC video quality comparison under QoE-driven seamless handoff. Signal Process Image Commun 27:814–826Pozueco L, Pañeda XG, García R, et al. (2013) Adaptable system based on Scalable Video Coding for high-quality video service. Comput Electr Eng 39:775–789. doi: 10.1016/j.compeleceng.2013.01.015Pozueco L, Pañeda XG, García R, et al. (2014) Adaptation engine for a streaming service based on MPEG-DASH. Multimed Tools Appl 1–20. doi: 10.1007/s11042-014-2034-ySchwarz H, Marpe D, Wiegand T (2007) Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Trans Circ Syst Video Technol 17:1103–1120. doi: 10.1109/TCSVT.2007.905532Seo H-Y (2013) An Efficient Transmission Scheme of MPEG2-TS over RTP for a Hybrid DMB System. ETRI J 35:655–665. doi: 10.4218/etrij.13.0112.0124Sohn H, Yoo H, De Neve W, et al. (2010) Full-Reference Video Quality Metric for Fully Scalable and Mobile SVC Content. IEEE Trans Broadcast 56:269–280. doi: 10.1109/TBC.2010.2050628Sousa-Vieira M-E (2011) Suitability of the M/G/∞ process for modeling scalable H.264 video traffic. In: Analytical and Stochastic Modeling Techniques and Applications. Springer, pp 149–158Tanwir S, Perros H (2013) A Survey of VBR Video Traffic Models. IEEE Commun Surv Tutor 15:1778–1802. doi: 10.1109/SURV.2013.010413.00071Tanwir S, Perros HG (2014) VBR Video Traffic Models. Wiley, HobokenThe Network Simulator (NS-2). http://www.isi.edu/nsnam/ns . Accessed 6 Feb 2015Unanue I, Urteaga I, Husemann R, et al. (2011) A Tutorial on H. 264/SVC Scalable Video Coding and its Tradeoff between Quality, Coding Efficiency and Performance. Recent Advances on Video Coding 1–24.Van der Auwera G, David PT, Reisslein M, Karam LJ (2008) Traffic and quality characterization of the H. 264/AVC scalable video coding extension. Adv Multimedia 2008:1Wang Y, Claypool M (2005) RealTracer—Tools for Measuring the Performance of RealVideo on the Internet. Multimed Tools Appl 27:411–430. doi: 10.1007/s11042-005-3757-6Wang Z, Lu L, Bovik AC (2004) Video quality assessment based on structural distortion measurement. Signal Process Image Commun 19:121–132. doi: 10.1016/S0923-5965(03)00076–6Wien M, Schwarz H, Oelbaum T (2007) Performance Analysis of SVC. IEEE Trans Circ Syst for Video Technol 17:1194–1203. doi: 10.1109/TCSVT.2007.905530YUV video repository. ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/ . Accessed 10 Jan 201

    A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks

    Full text link
    One of the major challenges for the transmission of time-sensitive data like video over mobile ad-hoc networks (MANETs) is the deployment of an end-to-end QoS support mechanism. Therefore, several approaches and enhancements have been proposed concerning the routing protocols. In this paper we propose a new QoS routing protocol based on AODV (named AQA-AODV), which creates routes according to application QoS requirements. We have introduced link and path available bandwidth estimation mechanisms and an adaptive scheme that can provide feedback to the source node about the current network state, to allow the application to appropriately adjust the transmission rate. In the same way, we propose a route recovery approach into the AQA-AODV protocol, which provides a mechanism to detect the link failures in a route and re-establish the connections taking into account the conditions of QoS that have been established during the previous route discovery phase. The simulation results reveal performance improvements in terms of packet delay, number of link failures and connection setup latency while we make more efficient use of the available bandwidth than other protocols like AODV and QAODV. In terms of video transmission, the obtained results prove that the combined use of AQA-AODV and the scalable video coding provides an efficient platform for supporting rate-adaptive video streaming.Castellanos Hernández, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2016). A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Computer Communications. 77:10-25. doi:10.1016/j.comcom.2015.08.012S10257

    QoS framework for video streaming in home networks

    Get PDF
    In this thesis we present a new SNR scalable video coding scheme. An important advantage of the proposed scheme is that it requires just a standard video decoder for processing each layer. The quality of the delivered video depends on the allocation of bit rates to the base and enhancement layers. For a given total bit rate, the combination with a bigger base layer delivers higher quality. The absence of dependencies between frames in enhancement layers makes the system resilient to losses of arbitrary frames from an enhancement layer. Furthermore, that property can be used in a more controlled fashion. An important characteristic of any video streaming scheme is the ability to handle network bandwidth fluctuations. We made a streaming technique that observes the network conditions and based on the observations reconfigures the layer configuration in order to achieve the best possible quality. A change of the network conditions forces a change in the number of layers or the bit rate of these layers. Knowledge of the network conditions allows delivery of a video of higher quality by choosing an optimal layer configuration. When the network degrades, the amount of data transmitted per second is decreased by skipping frames from an enhancement layer on the sender side. The presented video coding scheme allows skipping any frame from an enhancement layer, thus enabling an efficient real-time control over transmission at the network level and fine-grained control over the decoding of video data. The methodology proposed is not MPEG-2 specific and can be applied to other coding standards. We made a terminal resource manager that enables trade-offs between quality and resource consumption due to the use of scalable video coding in combination with scalable video algorithms. The controller developed for the decoding process optimizes the perceived quality with respect to the CPU power available and the amount of input data. The controller does not depend on the type of scalability technique and can therefore be used with any scalable video. The controller uses the strategy that is created offline by means of a Markov Decision Process. During the evaluation it was found that the correctness of the controller behavior depends on the correctness of parameter settings for MDP, so user tests should be employed to find the optimal settings

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481
    corecore