102 research outputs found

    Pushing the limits of inertial motion sensing

    Get PDF

    Development of a Clinical Marker-less Motion Capture System for Patient Monitoring

    Get PDF
    The ability to understand human movement is beneficial for deciding surgical procedures, tracking disease progression over time and helping with patient rehabilitation. The current gold-standard for collecting human movement is the use of 3-dimensional marker-based systems. Several studies have presented the many limitations to the current gold-standard that reduces the number of people who are able to benefit from a gait analysis. Those limitations in the current gold-standard include the requirements of large laboratory space, costly equipment, long instrumentation and collection time, and the potential for motion artifact from markers being placed on the skin. The purpose of this study is to create a marker-less motion capture system using the newly–released Kinect Azure cameras from Microsoft. The study aims to validate the new system against the gold-standard. A validation of a four Kinect Azure camera system was conducted with 10 subjects completing over ground walking trials at a self-selected pace, sit-to-stand, lunge, and step up/down while Kinect and 3D marker-based data were collected simultaneously. The data was synchronized and cut to a single activity cycle where joint angles and spatio-temporal measures were compared between the two systems. Walking speed and stride length were highly correlated between the two systems with r-values \u3e0.9 and p-values \u3c0.001. The average difference in maximum knee flexion angle between the two systems is 2.84° with a r=0.785 and p-value \u3c0.001. A 3D point cloud was generated from the four Kinect Azure camera system to generate a surface mesh. The 3D mesh was used to provide a better understanding of body habitus than current BMI

    Human Gait Based Relative Foot Sensing for Personal Navigation

    Get PDF
    Human gait dynamics were studied to aid the design of a robust personal navigation and tracking system for First Responders traversing a variety of GPS-denied environments. IMU packages comprised of accelerometers, gyroscopes, and magnetometer are positioned on each ankle. Difficulties in eliminating drift over time make inertial systems inaccurate. A novel concept for measuring relative foot distance via a network of RF Phase Modulation sensors is introduced to augment the accuracy of inertial systems. The relative foot sensor should be capable of accurately measuring distances between each node, allowing for the geometric derivation of a drift-free heading and distance. A simulation to design and verify the algorithms was developed for five subjects in different gait modes using gait data from a VICON motion capture system as input. These algorithms were used to predict the distance traveled up to 75 feet, with resulting errors on the order of one percent

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Customizable Wearable Vibrotactile Display for Gait Biofeedback Research

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Winter 2021Approximately a third of American adults experience balance problems throughout their lifetime which can lead to a fear of falling, activity avoidance, and an increasingly sedentary lifestyle. While gait and balance training regimens are the most common therapeutic solution for adults with increased risk for falling, interventions that involve personalized biofeedback have been successfully shown to improve standing balance in research studies; however, it is still unclear how best to provide meaningful biofeedback during gait-related activities. Current gait correction systems are limited to providing feedback on a single gait parameter which cannot capture the full complexity of gait, and commonly use only one feedback scheme/modality. Additionally, many devices cannot provide the device wearer with immediate feedback. Therefore, there is a need to develop a customizable/reconfigurable wearable device to be used in a research setting, which will explore the effects of vibrotactile feedback on individuals with vestibular disorders. This device must be able to gather information on multiple kinematic parameters related to gait and provide vibrotactile feedback for the device wearer to interpret and correct their balance irregularities within each testing trial. Ultimately, this research platform will inform the development of a clinic-based and home-based biofeedback system.Christopher DiCesare, Safa Jabri, Kathleen Sienko: Sienko Research Labhttp://deepblue.lib.umich.edu/bitstream/2027.42/167651/1/Team_7-Customizable_Wearable_Vibrotactile_Display_for_Gait_Biofeedback_Research.pd

    Autonomous Radar-based Gait Monitoring System

    Get PDF
    Features related to gait are fundamental metrics of human motion [1]. Human gait has been shown to be a valuable and feasible clinical marker to determine the risk of physical and mental functional decline [2], [3]. Technologies that detect changes in people’s gait patterns, especially older adults, could support the detection, evaluation, and monitoring of parameters related to changes in mobility, cognition, and frailty. Gait assessment has the potential to be leveraged as a clinical measurement as it is not limited to a specific health care discipline and is a consistent and sensitive test [4]. A wireless technology that uses electromagnetic waves (i.e., radar) to continually measure gait parameters at home or in a hospital without a clinician’s participation has been proposed as a suitable solution [3], [5]. This approach is based on the interaction between electromagnetic waves with humans and how their bodies impact the surrounding and scattered wireless signals. Since this approach uses wireless waves, people do not need to wear or carry a device on their bodies. Additionally, an electromagnetic wave wireless sensor has no privacy issues because there is no video-based camera. This thesis presents the design and testing of a radar-based contactless system that can monitor people’s gait patterns and recognize their activities in a range of indoor environments frequently and accurately. In this thesis, the use of commercially available radars for gait monitoring is investigated, which offers opportunities to implement unobtrusive and contactless gait monitoring and activity recognition. A novel fast and easy-to-implement gait extraction algorithm that enables an individual’s spatiotemporal gait parameter extraction at each gait cycle using a single FMCW (Frequency Modulated Continuous Wave) radar is proposed. The proposed system detects changes in gait that may be the signs of changes in mobility, cognition, and frailty, particularly for older adults in individual’s homes, retirement homes and long-term care facilities retirement homes. One of the straightforward applications for gait monitoring using radars is in corridors and hallways, which are commonly available in most residential homes, retirement, and long-term care homes. However, walls in the hallway have a strong “clutter” impact, creating multipath due to the wide beam of commercially available radar antennas. The multipath reflections could result in an inaccurate gait measurement because gait extraction algorithms employ the assumption that the maximum reflected signals come from the torso of the walking person (rather than indirect reflections or multipath) [6]. To address the challenges of hallway gait monitoring, two approaches were used: (1) a novel signal processing method and (2) modifying the radar antenna using a hyperbolic lens. For the first approach, a novel algorithm based on radar signal processing, unsupervised learning, and a subject detection, association and tracking method is proposed. This proposed algorithm could be paired with any type of multiple-input multiple-output (MIMO) or single-input multiple-output (SIMO) FMCW radar to capture human gait in a highly cluttered environment without needing radar antenna alteration. The algorithm functionality was validated by capturing spatiotemporal gait values (e.g., speed, step points, step time, step length, and step count) of people walking in a hallway. The preliminary results demonstrate the promising potential of the algorithm to accurately monitor gait in hallways, which increases opportunities for its applications in institutional and home environments. For the second approach, an in-package hyperbola-based lens antenna was designed that can be integrated with a radar module package empowered by the fast and easy-to-implement gait extraction method. The system functionality was successfully validated by capturing the spatiotemporal gait values of people walking in a hallway filled with metallic cabinets. The results achieved in this work pave the way to explore the use of stand-alone radar-based sensors in long hallways for day-to-day long-term monitoring of gait parameters of older adults or other populations. The possibility of the coexistence of multiple walking subjects is high, especially in long-term care facilities where other people, including older adults, might need assistance during walking. GaitRite and wearables are not able to assess multiple people’s gait at the same time using only one device [7], [8]. In this thesis, a novel radar-based algorithm is proposed that is capable of tracking multiple people or extracting walking speed of a participant with the coexistence of other people. To address the problem of tracking and monitoring multiple walking people in a cluttered environment, a novel iterative framework based on unsupervised learning and advanced signal processing was developed and tested to analyze the reflected radio signals and extract walking movements and trajectories in a hallway environment. Advanced algorithms were developed to remove multipath effects or ghosts created due to the interaction between walking subjects and stationary objects, to identify and separate reflected signals of two participants walking at a close distance, and to track multiple subjects over time. This method allows the extraction of walking speed in multiple closely-spaced subjects simultaneously, which is distinct from previous approaches where the speed of only one subject was obtained. The proposed multiple-people gait monitoring was assessed with 22 participants who participated in a bedrest (BR) study conducted at McGill University Health Centre (MUHC). The system functionality also was assessed for in-home applications. In this regard, a cloud-based system is proposed for non-contact, real-time recognition and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition and gait analysis. Range-Doppler maps generated from a dataset of real-life in-home activities are used to train deep learning models. The performance of several deep learning models was evaluated based on accuracy and prediction time, with the gated recurrent network (GRU) model selected for real-time deployment due to its balance of speed and accuracy compared to 2D Convolutional Neural Network Long Short-Term Memory (2D-CNNLSTM) and Long Short-Term Memory (LSTM) models. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject’s activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices

    Indoor Localization Solutions for a Marine Industry Augmented Reality Tool

    Get PDF
    In this report are described means for indoor localization in special, challenging circum-stances in marine industry. The work has been carried out in MARIN project, where a tool based on mobile augmented reality technologies for marine industry is developed. The tool can be used for various inspection and documentation tasks and it is aimed for improving the efficiency in design and construction work by offering the possibility to visualize the newest 3D-CAD model in real environment. Indoor localization is needed to support the system in initialization of the accurate camera pose calculation and auto-matically finding the right location in the 3D-CAD model. The suitability of each indoor localization method to the specific environment and circumstances is evaluated.Siirretty Doriast

    Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images

    Get PDF
    Die sensorübergreifende Personendetektion in einem Netzwerk von 3D-Sensoren ist die Grundlage vieler Anwendungen, wie z.B. Personenzählung, digitale Kundenstromanalyse oder öffentliche Sicherheit. Im Gegensatz zu klassischen Verfahren der Videoüberwachung haben 3D-Sensoren dabei im Allgemeinen eine vertikale top-down Sicht auf die Szene, um das Auftreten von Verdeckungen, wie sie z.B. in einer dicht gedrängten Menschenmenge auftreten, zu reduzieren. Aufgrund der vertikalen top-down Perspektive der Sensoren variiert die äußere Erscheinung von Personen sehr stark in Abhängigkeit von deren Position in der Szene. Des Weiteren sind Personen aufgrund von Verdeckungen, Sensorrauschen sowie dem eingeschränkten Sichtfeld der top-down Sensoren häufig nur partiell in einer einzelnen Ansicht sichtbar. Um diese Herausforderungen zu bewältigen, wird in dieser Arbeit untersucht, wie die räumlich-zeitlichen Multi-View-Beobachtungen von mehreren 3D-Sensoren mit sich überlappenden Sichtbereichen effektiv genutzt werden können. Der Fokus liegt insbesondere auf der Verbesserung der Detektionsleistung durch die gemeinsame Betrachtung sowohl der redundanten als auch der komplementären Multi-Sensor-Beobachtungen, einschließlich des zeitlichen Kontextes. In der Arbeit wird das Problem der Personendetektion in einer Sequenz sich überlappender Tiefenbilder als inverses Problem formuliert. In diesem Kontext wird ein probabilistisches Modell zur Personendetektion in mehreren Tiefenbildern eingeführt. Das Modell beinhaltet ein generatives Szenenmodell, um Personen aus beliebigen Blickwinkeln zu erkennen. Basierend auf der vorgeschlagenen probabilistischen Modellierung werden mehrere Inferenzmethoden untersucht, unter anderem Gradienten-basierte kontinuierliche Optimierung, Variational Inference, sowie Convolutional Neural Networks. Dabei liegt der Schwerpunkt der Arbeit auf dem Einsatz von Variationsmethoden wie Mean-Field Variational Inference. In Abgrenzung zu klassischen Verfahren der Literatur wird hier keine Punkt-Schätzung vorgenommen, sondern die a-posteriori Wahrscheinlichkeitsverteilung der in der Szene anwesenden Personen approximiert. Durch den Einsatz des generativen Vorwärtsmodells, welches die Charakteristik der zugrundeliegenden Sensormodalität beinhaltet, ist das vorgeschlagene Verfahren weitestgehend unabhängig von der konkreten Sensormodalität. Die in der Arbeit vorgestellten Methoden werden anhand eines neu eingeführten Datensatzes zur weitflächigen Personendetektion in mehreren sich überlappenden Tiefenbildern evaluiert. Der Datensatz umfasst Bildmaterial von drei passiven Stereo-Sensoren, welche eine top-down Sicht auf eine Bürosituation vorweisen. In der Evaluation konnte nachgewiesen werden, dass die vorgeschlagene Mean-Field Variational Inference Approximation Stand-der-Technik-Resultate erzielt. Während Deep Learnig Verfahren sehr viele annotierte Trainingsdaten benötigen, basiert die in dieser Arbeit vorgeschlagene Methode auf einem expliziten probabilistischen Modell und benötigt keine Trainingsdaten. Ein weiterer Vorteil zu klassischen Verfahren, welche häufig nur eine MAP Punkt-Schätzung vornehmen, besteht in der Approximation der vollständigen Verbund-Wahrscheinlichkeitsverteilung der in der Szene anwesenden Personen

    Body sensor network for in-home personal healthcare

    Get PDF
    A body sensor network solution for personal healthcare under an indoor environment is developed. The system is capable of logging the physiological signals of human beings, tracking the orientations of human body, and monitoring the environmental attributes, which covers all necessary information for the personal healthcare in an indoor environment. The major three chapters of this dissertation contain three subsystems in this work, each corresponding to one subsystem: BioLogger, PAMS and CosNet. Each chapter covers the background and motivation of the subsystem, the related theory, the hardware/software design, and the evaluation of the prototype’s performance

    Proceedings XXI Congresso SIAMOC 2021

    Get PDF
    XXI Congresso Annuale della SIAMOC, modalità telematica il 30 settembre e il 1° ottobre 2021. Come da tradizione, il congresso vuole essere un’occasione di arricchimento e mutuo scambio, dal punto di vista scientifico e umano. Verranno toccati i temi classici dell’analisi del movimento, come lo sviluppo e l’applicazione di metodi per lo studio del movimento nel contesto clinico, e temi invece estremamente attuali, come la teleriabilitazione e il telemonitoraggio
    • …
    corecore