5,946 research outputs found

    Domain-independent neural underpinning of task-switching: an fMRI investigation

    Get PDF
    The ability to shift between different tasks according to internal or external demands, which is at the core of our behavioral flexibility, has been generally linked to the functionality of left fronto-parietal regions. Traditionally, the left and right hemispheres have also been associated with verbal and spatial processing, respectively. We therefore investigated with functional MRI whether the processes engaged during task-switching interact in the brain with the domain of the tasks to be switched, that is, verbal or spatial. Importantly, physical stimuli were exactly the same and participants\u2019 performance was matched between the two domains. The fMRI results showed a clearly left-lateralized involvement of fronto-parietal regions when contrasting task-switching vs. single task blocks in the context of verbal rules. A more bilateral pattern, especially in the prefrontal cortex, was instead observed for switching between spatial tasks. Moreover, while a conjunction analysis showed that the core regions involved in task-switching, independently of the switching context, were localized both in left inferior prefrontal and parietal cortices and in bilateral supplementary motor area, a direct analysis of functional lateralization revealed that hemispheric asymmetries in the frontal lobes were more biased toward the left side for the verbal domain than for the spatial one and vice versa. Overall, these findings highlight the role of left fronto-parietal regions in task-switching, above and beyond the specific task requirements, but also show that hemispheric asymmetries may be modulated by the more specific nature of the tasks to be performed during task-switching

    The role of the lateral prefrontal cortex and anterior cingulate in stimulus–response association reversals

    Get PDF
    Many complex tasks require us to flexibly switch between behavioral rules, associations, and strategies. The prefrontal cerebral cortex is thought to be critical to the performance of such behaviors, although the relative contribution of different components of this structure and associated subcortical regions are not fully understood. We used functional magnetic resonance imaging to measure brain activity during a simple task which required repeated reversals of a rule linking a colored cue and a left/right motor response. Each trial comprised three discrete events separated by variable delay periods. A colored cue instructed which response was to be executed, followed by a go signal which told the subject to execute the response and a feedback instruction which indicated whether to ‘‘hold’’ or ‘‘f lip’’ the rule linking the colored cue and response. The design allowed us to determine which brain regions were recruited by the specific demands of preparing a rule contingent motor response, executing such a response, evaluating the significance of the feedback, and reconfiguring stimulus–response (SR) associations. The results indicate that an increase in neural activity occurs within the anterior cingulate gyrus under conditions in which SR associations are labile. In contrast, lateral frontal regions are activated by unlikely/unexpected perceptual events regardless of their significance for behavior. A network of subcortical structures, including the mediodorsal nucleus of the thalamus and striatum were the only regions showing activity that was exclusively correlated with the neurocognitive demands of reversing SR associations. We conclude that lateral frontal regions act to evaluate the behavioral significance of perceptual events, whereas medial frontal–thalamic circuits are involved in monitoring and reconfiguring SR associations when necessary

    Frontoparietal representations of task context support the flexible control of goal-directed cognition.

    Get PDF
    Cognitive control allows stimulus-response processing to be aligned with internal goals and is thus central to intelligent, purposeful behavior. Control is thought to depend in part on the active representation of task information in prefrontal cortex (PFC), which provides a source of contextual bias on perception, decision making, and action. In the present study, we investigated the organization, influences, and consequences of context representation as human subjects performed a cued sorting task that required them to flexibly judge the relationship between pairs of multivalent stimuli. Using a connectivity-based parcellation of PFC and multivariate decoding analyses, we determined that context is specifically and transiently represented in a region spanning the inferior frontal sulcus during context-dependent decision making. We also found strong evidence that decision context is represented within the intraparietal sulcus, an area previously shown to be functionally networked with the inferior frontal sulcus at rest and during task performance. Rule-guided allocation of attention to different stimulus dimensions produced discriminable patterns of activation in visual cortex, providing a signature of top-down bias over perception. Furthermore, demands on cognitive control arising from the task structure modulated context representation, which was found to be strongest after a shift in task rules. When context representation in frontoparietal areas increased in strength, as measured by the discriminability of high-dimensional activation patterns, the bias on attended stimulus features was enhanced. These results provide novel evidence that illuminates the mechanisms by which humans flexibly guide behavior in complex environments

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Cue validity and object-based attention

    Get PDF
    In a previous study, Egly, Driver, and Rafal (1994) observed both space- and object-based components of visual selective attention. However, the mechanisms underlying these two components and the relationship between them are not well understood. In the present research, with a similar paradigm, these issues were addressed by manipulating cue validity. Behavioral results indicated the presence of both space- and object-based components under high cue validity, similar to the results of Egly et al.'s study. In addition, under low cue validity, the space-based component was absent, whereas the object-based component was maintained. Further event-related potential results demonstrated an object-based effect at a sensory level over the posterior areas of brain, and a space-based effect over the anterior region. The present data suggest that the space- and object-based components reflect mainly voluntary and reflexive mechanisms, respectively

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Context-specific activations are a hallmark of the neural basis of individual differences in general executive function

    Get PDF
    Common executive functioning (cEF) is a domain-general factor that captures shared variance in performance across diverse executive function tasks. To investigate the neural mechanisms of individual differences in cEF (e.g., goal maintenance, biasing), we conducted the largest fMRI study of multiple executive tasks to date (N = 546). Group average activation during response inhibition (antisaccade task), working memory updating (keep track task), and mental set shifting (number–letter switch task) overlapped in classic cognitive control regions. However, there were no areas across tasks that were consistently correlated with individual differences in cEF ability. Although similar brain areas are recruited when completing different executive function tasks, activation levels of those areas are not consistently associated with better performance. This pattern is inconsistent with a simple model in which higher cEF is associated with greater or less activation of a set of control regions across different task contexts; however, it is potentially consistent with a model in which individual differences in cEF primarily depend on activation of domain-specific targets of executive function. Brain features that explain commonalities in executive function performance across tasks remain to be discovered

    Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies

    Get PDF
    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks

    Selection for cognitive control: a functional magnetic resonance imaging study on the selection of task-relevant information

    Get PDF
    The complex environment we live in makes it necessary to distinguish relevant from irrelevant information constantly and reliably. The aim of the present study was to investigate the neural substrate underlying the selection of task-relevant information. We devised a new paradigm in which participants had to switch between two different tasks that were instructed by task cues. The task cues had a relevant and an irrelevant cue dimension. In congruent trials, both cue dimensions indicated the same task; in incongruent trials, they indicated different tasks; and in neutral trials, only the relevant dimension indicated a task. By comparing trials in which both cue dimensions were informative (congruent and incongruent trials) with trials in which only the relevant dimension was informative (neutral trials), we were able to show that the lateral prefrontal cortex and a region in the intraparietal sulcus are involved in the selection of task-relevant information. Furthermore, the present paradigm allows the influence of the selected task and stimulus dimension to be investigated. No significant influence was found in the prefrontal cortex, indicating that this region serves a very abstract role in the selection of task-relevant information
    • …
    corecore