310,597 research outputs found

    Change Point Detection on a Separable Model for Dynamic Networks

    Full text link
    This paper studies the change point detection problem in time series of networks, with the Separable Temporal Exponential-family Random Graph Model (STERGM). We consider a sequence of networks generated from a piecewise constant distribution that is altered at unknown change points in time. Detection of the change points can identify the discrepancies in the underlying data generating processes and facilitate downstream dynamic network analysis tasks. Moreover, the STERGM that focuses on network statistics is a flexible model to fit dynamic networks with both dyadic and temporal dependence. We propose a new estimator derived from the Alternating Direction Method of Multipliers (ADMM) and the Group Fused Lasso to simultaneously detect multiple time points, where the parameters of STERGM have changed. We also provide Bayesian information criterion for model selection to assist the detection. Our experiments show good performance of the proposed method on both simulated and real data. Lastly, we develop an R package CPDstergm to implement our method

    Change Point Methods on a Sequence of Graphs

    Get PDF
    Given a finite sequence of graphs, e.g., coming from technological, biological, and social networks, the paper proposes a methodology to identify possible changes in stationarity in the stochastic process generating the graphs. In order to cover a large class of applications, we consider the general family of attributed graphs where both topology (number of vertexes and edge configuration) and related attributes are allowed to change also in the stationary case. Novel Change Point Methods (CPMs) are proposed, that (i) map graphs into a vector domain; (ii) apply a suitable statistical test in the vector space; (iii) detect the change --if any-- according to a confidence level and provide an estimate for its time occurrence. Two specific multivariate CPMs have been designed: one that detects shifts in the distribution mean, the other addressing generic changes affecting the distribution. We ground our proposal with theoretical results showing how to relate the inference attained in the numerical vector space to the graph domain, and vice versa. We also show how to extend the methodology for handling multiple change points in the same sequence. Finally, the proposed CPMs have been validated on real data sets coming from epileptic-seizure detection problems and on labeled data sets for graph classification. Results show the effectiveness of what proposed in relevant application scenarios

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Evolutionary Events in a Mathematical Sciences Research Collaboration Network

    Full text link
    This study examines long-term trends and shifting behavior in the collaboration network of mathematics literature, using a subset of data from Mathematical Reviews spanning 1985-2009. Rather than modeling the network cumulatively, this study traces the evolution of the "here and now" using fixed-duration sliding windows. The analysis uses a suite of common network diagnostics, including the distributions of degrees, distances, and clustering, to track network structure. Several random models that call these diagnostics as parameters help tease them apart as factors from the values of others. Some behaviors are consistent over the entire interval, but most diagnostics indicate that the network's structural evolution is dominated by occasional dramatic shifts in otherwise steady trends. These behaviors are not distributed evenly across the network; stark differences in evolution can be observed between two major subnetworks, loosely thought of as "pure" and "applied", which approximately partition the aggregate. The paper characterizes two major events along the mathematics network trajectory and discusses possible explanatory factors.Comment: 30 pages, 14 figures, 1 table; supporting information: 5 pages, 5 figures; published in Scientometric

    Online Causal Structure Learning in the Presence of Latent Variables

    Full text link
    We present two online causal structure learning algorithms which can track changes in a causal structure and process data in a dynamic real-time manner. Standard causal structure learning algorithms assume that causal structure does not change during the data collection process, but in real-world scenarios, it does often change. Therefore, it is inappropriate to handle such changes with existing batch-learning approaches, and instead, a structure should be learned in an online manner. The online causal structure learning algorithms we present here can revise correlation values without reprocessing the entire dataset and use an existing model to avoid relearning the causal links in the prior model, which still fit data. Proposed algorithms are tested on synthetic and real-world datasets, the latter being a seasonally adjusted commodity price index dataset for the U.S. The online causal structure learning algorithms outperformed standard FCI by a large margin in learning the changed causal structure correctly and efficiently when latent variables were present.Comment: 16 pages, 9 figures, 2 table
    • …
    corecore