58 research outputs found

    A novel approach to multi-attribute group decision-making based on interval-valued intuitionistic fuzzy power Muirhead mean

    Get PDF
    This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators for IVIF information and further proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean (MM) are two powerful and effective information aggregation technologies. The most attractive advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values on the information aggregation results. The prominent characteristic of the MM operator is that it is flexible to capture the interrelationship among any numbers of arguments, making it more powerful than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-making information is introduced. Finally, a numerical example is provided to show the performance of the proposed method

    Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making

    Get PDF
    Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth power of the membership degree and qth power of the non-membership degree is less than or equal to one. This characteristic makes q-ROFS more powerful and useful than intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS). The aim of this paper is to develop some aggregation operators for fusing q-rung orthopair fuzzy information. As the Muirhead mean (MM) is considered as a useful aggregation technology which can capture interrelationships among all aggregated arguments, we extend the MM to q-rung orthopair fuzzy environment and propose a family of q-rung orthopair fuzzy Muirhead mean operators. Moreover, we investigate some desirable properties and special cases of the proposed operators. Further, we apply the proposed operators to solve multi-attribute group decision making (MAGDM) problems. Finally, a numerical instance as well as some comparative analysis are provided to demonstrate the validity and superiorities of the proposed method

    A novel multi-criteria group decision-making approach using aggregation operators and weight determination method for supplier selection problem in hesitant Pythagorean fuzzy environment

    Get PDF
    Uncertainty is an important factor in the decision-making process. Hesitant Pythagorean fuzzy sets (HPFS), a combination of Pythagorean and hesitant fuzzy sets, proved as a significant tool to handle uncertainty. Well-defined operational laws and attribute weights play an important role in decision-making. Thus, the paper aims to develop new Trigonometric Operational Laws, a weight determination method, and a novel score function for group decision-making (GDM) problems in the HPF environment. The approach is presented in three phases. The first phase defines new operational laws with sine trigonometric function incorporating its special properties like periodicity, symmetricity, and restricted range hence compared with previously defined aggregation operators they are more likely to satisfy the decision maker preferences. Properties of trigonometric operational laws (TOL) are studied and various aggregation operators are defined. To measure the relationship between arguments, the operators are combined with the Generalized Heronian Mean operator. The flexibility of operators is increased by the use of a real parameter λ to express the risk preference of experts. The second phase defines a novel weight determination method, which separately considers the membership and non-membership degrees hence reducing the information loss and the third phase conquers the shortcomings of previously defined score functions by defining a novel score function in HPFS. To further increase the flexibility of defined operators they are extended in the environment with unknown or incomplete attribute weights. The effectiveness of the GDM model is verified with the help of a supplier selection problem. A detailed comparative analysis demonstrates the superiority, and sensitivity analysis verifies the stability of the proposed approach

    A Method Based on Intuitionistic Fuzzy Dependent Aggregation Operators for Supplier Selection

    Get PDF
    Recently, resolving the decision making problem of evaluation and ranking the potential suppliers have become as a key strategic factor for business firms. In this paper, two new intuitionistic fuzzy aggregation operators are developed: dependent intuitionistic fuzzy ordered weighed averaging (DIFOWA) operator and dependent intuitionistic fuzzy hybrid weighed aggregation (DIFHWA) operator. Some of their main properties are studied. A method based on the DIFHWA operator for intuitionistic fuzzy multiple attribute decision making is presented. Finally, an illustrative example concerning supplier selection is given

    Pythagorean fuzzy Muirhead mean operators in multiple attribute decision making for evaluating of emerging technology commercialization

    Get PDF
    In today’s world, with the advancement of technology, several emerging technologies are coming. Faced with massive emerging technologies which are the component of the technology pool, how to identify the commercial potential of emerging technologies in theory and practice is an important problem. The scientific approach to the selection of these emerging technologies is one of the main objectives of the research. In this paper, we extend Muirhead mean (MM) operator and dual MM (DMM) operator to process the Pythagorean fuzzy numbers (PFNs) and then to solve the multiple attribute decision making (MADM) problems. Firstly, we develop some Pythagorean fuzzy Muirhead mean operators by extending MM and DMM operators to Pythagorean fuzzy information. Then, we prove some properties and discuss some special cases with respect to the parameter vector. Moreover, we present some new methods to deal with MADM problems with the PFNs based on the proposed MM and DMM operators. Finally, we verify the validity and reliability of our methods by using an application example for potential evaluation of emerging technology commercialization, and analyze the advantages of our methods by comparing with other existing method

    Dual Generalized Nonnegative Normal Neutrosophic Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making

    Get PDF
    For multiple attribute decision making, ranking and information aggregation problems are increasingly receiving attention. In a normal neutrosophic number, the ranking method does not satisfy the ranking principle
    • …
    corecore