303,489 research outputs found

    New age for alignment-free methods for sequence analyses

    Get PDF
    Progress in a wide range of fields ranging from population genetics to precision medicine may be attributed to availability of big biological data. Alignment-free sequence comparison is the methodology of choice in data-intensive applications given that it is significantly faster and requires less resources compared to traditional sequence comparison based on pairwise or multiple sequence alignment. The symbiosis of alignment-free methods with machine learning is a paradigm of new age in bioinformatics, as it ensures the much needed boost to quicken the complex predictions on large datasets, particularly of molecules with low sequence identity. In this talk, I will present two stories in which I will describe approaches to predict functional consequences of gene variants and imperfect tandem repeats in protein sequences.Special Edition of Book of Abstract

    Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    Get PDF
    Background: Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results: We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions: The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences

    Kernels for Protein Homology Detection

    Get PDF
    Determining protein sequence similarity is an important task for protein classification and homology detection, which is typically performed using sequence alignment algorithms. Fast and accurate alignment-free kernel based classifiers exist, that treat protein sequences as a “bag of words”. Kernels implicitly map the sequences to a high dimensional feature space, and can be thought of as an inner product between two vectors in that space. This allows an algorithm that can be expressed purely in terms of inner products to be ‘kernelised’, where the algorithm implicitly operates in the kernel’s feature space. A weighted string kernel, where the weighting is derived using probabilistic methods, is implemented using a binary data representation, and the results reported. Alternative forms of data representation, such as Ising and frequency forms, are implemented and the results discussed. These results are then used to inform the development of a variety of novel kernels for protein sequence comparison. Alternative forms of classifier are investigated, such as nearest neighbour, support vector machines, and multiple kernel learning. A kernelized Gaussian classifier is derived and tested, which is informative as it returns a score related to the probability of a sequence belonging to a particular classification. Support vector machines are tested with the introduced kernels, and the results compared to alternate classifiers. As similarity can be thought of as having different components, such as composition and position, multiple kernel learning is investigated with the novel kernels developed here. The results show that a support vector machine, using either single or multiple kernels, is the best classifier for remote protein homology detection out of all the classifiers tested in this thesis.EPSR

    ‘Multi-SpaM’: a maximum-likelihood approach to phylogeny reconstruction using multiple spaced-word matches and quartet trees

    Get PDF
    Word-based or ‘alignment-free’ methods for phylogeny inference have become popular in recent years. These methods are much faster than traditional, alignment-based approaches, but they are generally less accurate. Most alignment-free methods calculate ‘pairwise’ distances between nucleicacid or protein sequences; these distance values can then be used as input for tree-reconstruction programs such as neighbor-joining. In this paper, we propose the first word-based phylogeny approach that is based on ‘multiple’ sequence comparison and ‘maximum likelihood’. Our algorithm first samples small, gap-free alignments involving four taxa each. For each of these alignments, it then calculates a quartet tree and, finally, the program ‘Quartet MaxCut’ is used to infer a super tree for the full set of input taxa from the calculated quartet trees. Experimental results show that trees produced with our approach are of high quality

    e-RNA: a collection of web servers for comparative RNA structure prediction and visualisation

    Get PDF
    e-RNA offers a free and open-access collection of five published RNA sequence analysis tools, each solving specific problems not readily addressed by other available tools. Given multiple sequence alignments, Transat detects all conserved helices, including those expected in a final structure, but also transient, alternative and pseudo-knotted helices. RNA-Decoder uses unique evolutionary models to detect conserved RNA secondary structure in alignments which may be partly protein-coding. SimulFold simultaneously co-estimates the potentially pseudo-knotted conserved structure, alignment and phylogenetic tree for a set of homologous input sequences. CoFold predicts the minimum-free energy structure for an input sequence while taking the effects of co-transcriptional folding into account, thereby greatly improving the prediction accuracy for long sequences. R-chie is a program to visualise RNA secondary structures as arc diagrams, allowing for easy comparison and analysis of conserved base-pairs and quantitative features. The web site server dispatches user jobs to a cluster, where up to 100 jobs can be processed in parallel. Upon job completion, users can retrieve their results via a bookmarked or emailed link. e-RNA is located at http://www.e-rna.org

    Fractal MapReduce decomposition of sequence alignment

    Get PDF
    This work was supported in part by the Center for Clinical and Translational Sciences of the University of Alabama at Birmingham under contract no. 5UL1 RR025777-03 from NIH National Center for Research Resources, by the National Cancer Institute grant 1U24CA143883-01, by the European Union FP7 PNEUMOPATH (HEALTH F3 2009 222983).Background: The dramatic fall in the cost of genomic sequencing, and the increasing convenience of distributed cloud computing resources, positions the MapReduce coding pattern as a cornerstone of scalable bioinformatics algorithm development. In some cases an algorithm will find a natural distribution via use of map functions to process vectorized components, followed by a reduce of aggregate intermediate results. However, for some data analysis procedures such as sequence analysis, a more fundamental reformulation may be required. Results: In this report we describe a solution to sequence comparison that can be thoroughly decomposed into multiple rounds of map and reduce operations. The route taken makes use of iterated maps, a fractal analysis technique, that has been found to provide a "alignment-free" solution to sequence analysis and comparison. That is, a solution that does not require dynamic programming, relying on a numeric Chaos Game Representation (CGR) data structure. This claim is demonstrated in this report by calculating the length of the longest similar segment by inspecting only the USM coordinates of two analogous units: with no resort to dynamic programming. Conclusions: The procedure described is an attempt at extreme decomposition and parallelization of sequence alignment in anticipation of a volume of genomic sequence data that cannot be met by current algorithmic frameworks. The solution found is delivered with a browser-based application (webApp), highlighting the browser's emergence as an environment for high performance distributed computing. Availability: Public distribution of accompanying software library with open source and version control at http://usm.github.com. Also available as a webApp through Google Chrome's WebStore http://chrome.google.com/webstore: search with "usm".publishersversionpublishe

    A Novel Approach to Clustering Genome Sequences Using Inter-nucleotide Covariance

    Get PDF
    Classification of DNA sequences is an important issue in the bioinformatics study, yet most existing methods for phylogenetic analysis including Multiple Sequence Alignment (MSA) are time-consuming and computationally expensive. The alignment-free methods are popular nowadays, whereas the manual intervention in those methods usually decreases the accuracy. Also, the interactions among nucleotides are neglected in most methods. Here we propose a new Accumulated Natural Vector (ANV) method which represents each DNA sequence by a point in ℝ18. By calculating the Accumulated Indicator Functions of nucleotides, we can further find an Accumulated Natural Vector for each sequence. This new Accumulated Natural Vector not only can capture the distribution of each nucleotide, but also provide the covariance among nucleotides. Thus global comparison of DNA sequences or genomes can be done easily in ℝ18. The tests of ANV of datasets of different sizes and types have proved the accuracy and time-efficiency of the new proposed ANV method
    • 

    corecore