990 research outputs found

    A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

    Full text link
    Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing

    Hybrid Workload Enabled and Secure Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network

    Get PDF
    The Internet of Medical Things (IoMT) workflow applications have been rapidly growing in practice. These internet-based applications can run on the distributed healthcare sensing system, which combines mobile computing, edge computing and cloud computing. Offloading and scheduling are the required methods in the distributed network. However, a security issue exists and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare architecture for workflow applications based on heterogeneous computing nodes layers: an application layer, management layer, and resource layer. The goal is to minimize the makespan of all applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling (SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. The performance evaluation results show that the proposed plans outperform all existing baseline approaches for healthcare applications in terms of makespan

    Dynamic application partitioning and task-scheduling secure schemes for biosensor healthcare workload in mobile edge cloud

    Get PDF
    Currently, the use of biosensor-enabled mobile healthcare workflow applications in mobile edge-cloud-enabled systems is increasing progressively. These applications are heavyweight and divided between a thin client mobile device and a thick server edge cloud for execution. Application partitioning is a mechanism in which applications are divided based on resource and energy parameters. However, existing application-partitioning schemes widely ignore security aspects for healthcare applications. This study devises a dynamic application-partitioning workload task-scheduling-secure (DAPWTS) algorithm framework that consists of different schemes, such as min-cut algorithm, searching node, energy-enabled scheduling, failure scheduling, and security schemes. The goal is to minimize the energy consumption of nodes and divide the application between local nodes and edge nodes by applying the secure min-cut algorithm. Furthermore, the study devises the secure-min-cut algorithm, which aims to migrate data between nodes in a secure form during application partitioning in the system. After partitioning the applications, the node-search algorithm searches optimally to run applications under their deadlines. The energy and failure schemes maintain the energy consumption of the nodes and the failure of the system. Simulation results show that DAPWTS outperforms existing baseline approaches by 30% in terms of energy consumption, deadline, and failure of applications in the system.publishedVersio

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays

    Computation Offloading and Scheduling in Edge-Fog Cloud Computing

    Get PDF
    Resource allocation and task scheduling in the Cloud environment faces many challenges, such as time delay, energy consumption, and security. Also, executing computation tasks of mobile applications on mobile devices (MDs) requires a lot of resources, so they can offload to the Cloud. But Cloud is far from MDs and has challenges as high delay and power consumption. Edge computing with processing near the Internet of Things (IoT) devices have been able to reduce the delay to some extent, but the problem is distancing itself from the Cloud. The fog computing (FC), with the placement of sensors and Cloud, increase the speed and reduce the energy consumption. Thus, FC is suitable for IoT applications. In this article, we review the resource allocation and task scheduling methods in Cloud, Edge and Fog environments, such as traditional, heuristic, and meta-heuristics. We also categorize the researches related to task offloading in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Mobile Fog Computing (MFC). Our categorization criteria include the issue, proposed strategy, objectives, framework, and test environment.
    corecore