1,329 research outputs found

    Travel Time Estimation and Order Barching in a 2-Block Warehouse

    Get PDF
    The order batching problem (OBP) is the problem of determining the number of orders to be picked together in one picking tour. Although various objectives may arise in practice, minimizing the average throughput time of a random order is a common concern. In this paper, we consider the OBP for a 2-block rectangular warehouse with the assumptions that orders arrive according to a Poisson process and the method used for routing the order-pickers is the well-known S-shape heuristic. We first elaborate on the first and second moment of the order-picker's travel time. Then we use these moments to estimate the average throughput time of a random order. This enables us to estimate the optimal picking batch size. Results from simulation show that the method provides a high accuracy level. Furthermore, the method is rather simple and can be easily applied in practice

    Bi-objective supply chain problem using MOPSO and NSGA-II

    Get PDF
    The increase competition and decline economy has increased the relevant importance of having reliable supply chain. The primary objective of many supply chain problems is to reduce the cost of services and, at the same time, to increase the quality of services. In this paper, we present a multi-level supply chain network by considering multi products, single resource and deterministic cost and demand. The proposed model of this paper is formulated as a mixed integer programming and we present two metaheuristics namely MOPSO and NSGA-II to solve the resulted problems. The performance of the proposed models of this paper has been examined using some randomly generated numbers and the results are discussed. The preliminary results indicate that while MOPSO is able to generate more Pareto solutions in relatively less amount of time, NSGA-II is capable of providing better quality results

    Use Of Genetic Algorithms in Supply Chain Management. Literature Review and Current Trends

    Get PDF
    For the past few decades SCM has been one of the main objectives in research and practice. Since that time researchers have developed a lot of methods and procedures which optimized this process. To create an efficient supply chain network the resources and factories must be tightly integrated. The most supply chain network designs have multiple layers, members, periods, products, and comparative resources constraints exist between different layers. Supply chain networks design is related to the problems which are very popular in literature. The subject of this paper is to present the variants, configurations and parameters of genetic algorithm (GA) for solving supply chain network design problems. We focus on references from 2000 to 2011. Furthermore, current trends are introduced and discussed

    A survey on performance analysis of warehouse carousel systems

    Get PDF
    This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousels, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    Dynamic allocation in multi-dimensional inventory models

    Get PDF

    Optimization of bit interleaved coded modulation using genetic algorithms

    Get PDF
    Modern wireless communication systems must be optimized with respect to both bandwidth efficiency and energy efficiency. A common approach to achieve these goals is to use multi-level modulation such as quadrature-amplitude modulation (QAM) for bandwidth efficiency and an error-control code for energy efficiency. In benign additive white Gaussian noise (AWGN) channels, Ungerboeck proposed trellis-coded modulation (TCM), which combines modulation and coding into a joint operation. However, in fading channels, it is important to maximize diversity. As shown by Zehavi, diversity is maximized by performing coding and modulation separately and interleaving bits that are passed from the encoder to the modulator. Such systems are termed BICM for bit-interleaved coded modulation. Later, Li and Ritcey proposed a method for improving the performance of BICM systems by iteratively passing information between the demodulator and decoder. Such systems are termed BICM-ID , for BICM with Iterative Decoding. The bit error rate (BER) curve of a typical BICM-ID system is characterized by a steeply sloping waterfall region followed by an error floor with a gradual slope.;This thesis is focused on optimizing BICM-ID systems in the error floor region. The problem of minimizing the error bound is formulated as an instance of the Quadratic Assignment Problem (QAP) and solved using a genetic algorithm. First, an optimization is performed by fixing the modulation and varying the bit-to-symbol mapping. This approach provides the lowest possible error floor for a BICM-ID system using standard QAM and phase-shift keying (PSK) modulations. Next, the optimization is performed by varying not only the bit-to-symbol mapping, but also the location of the signal points within the two-dimensional constellation. This provides an error floor that is lower than that achieved with the best QAM and PSK systems, although at the cost of a delayed waterfall region
    • …
    corecore