519 research outputs found

    H-VFI: Hierarchical Frame Interpolation for Videos with Large Motions

    Full text link
    Capitalizing on the rapid development of neural networks, recent video frame interpolation (VFI) methods have achieved notable improvements. However, they still fall short for real-world videos containing large motions. Complex deformation and/or occlusion caused by large motions make it an extremely difficult problem in video frame interpolation. In this paper, we propose a simple yet effective solution, H-VFI, to deal with large motions in video frame interpolation. H-VFI contributes a hierarchical video interpolation transformer (HVIT) to learn a deformable kernel in a coarse-to-fine strategy in multiple scales. The learnt deformable kernel is then utilized in convolving the input frames for predicting the interpolated frame. Starting from the smallest scale, H-VFI updates the deformable kernel by a residual in succession based on former predicted kernels, intermediate interpolated results and hierarchical features from transformer. Bias and masks to refine the final outputs are then predicted by a transformer block based on interpolated results. The advantage of such a progressive approximation is that the large motion frame interpolation problem can be decomposed into several relatively simpler sub-tasks, which enables a very accurate prediction in the final results. Another noteworthy contribution of our paper consists of a large-scale high-quality dataset, YouTube200K, which contains videos depicting a great variety of scenarios captured at high resolution and high frame rate. Extensive experiments on multiple frame interpolation benchmarks validate that H-VFI outperforms existing state-of-the-art methods especially for videos with large motions

    Efficient Convolution and Transformer-Based Network for Video Frame Interpolation

    Full text link
    Video frame interpolation is an increasingly important research task with several key industrial applications in the video coding, broadcast and production sectors. Recently, transformers have been introduced to the field resulting in substantial performance gains. However, this comes at a cost of greatly increased memory usage, training and inference time. In this paper, a novel method integrating a transformer encoder and convolutional features is proposed. This network reduces the memory burden by close to 50% and runs up to four times faster during inference time compared to existing transformer-based interpolation methods. A dual-encoder architecture is introduced which combines the strength of convolutions in modelling local correlations with those of the transformer for long-range dependencies. Quantitative evaluations are conducted on various benchmarks with complex motion to showcase the robustness of the proposed method, achieving competitive performance compared to state-of-the-art interpolation networks.Comment: Paper accepted in IEEE ICIP 2023: International Conference on Image Processing 202

    JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation

    Full text link
    Video frame interpolation (VFI) aims to generate predictive frames by warping learnable motions from the bidirectional historical references. Most existing works utilize spatio-temporal semantic information extractor to realize motion estimation and interpolation modeling. However, they insufficiently consider the real mechanistic rationality of generated middle motions. In this paper, we reformulate VFI as a Joint Non-linear Motion Regression (JNMR) strategy to model the complicated motions of inter-frame. Specifically, the motion trajectory between the target frame and the multiple reference frames is regressed by a temporal concatenation of multi-stage quadratic models. ConvLSTM is adopted to construct this joint distribution of complete motions in temporal dimension. Moreover, the feature learning network is designed to optimize for the joint regression modeling. A coarse-to-fine synthesis enhancement module is also conducted to learn visual dynamics at different resolutions through repetitive regression and interpolation. Experimental results on VFI show that the effectiveness and significant improvement of joint motion regression compared with the state-of-the-art methods. The code is available at https://github.com/ruhig6/JNMR.Comment: Accepted by IEEE Transactions on Image Processing (TIP

    TTVFI: Learning Trajectory-Aware Transformer for Video Frame Interpolation

    Full text link
    Video frame interpolation (VFI) aims to synthesize an intermediate frame between two consecutive frames. State-of-the-art approaches usually adopt a two-step solution, which includes 1) generating locally-warped pixels by flow-based motion estimations, 2) blending the warped pixels to form a full frame through deep neural synthesis networks. However, due to the inconsistent warping from the two consecutive frames, the warped features for new frames are usually not aligned, which leads to distorted and blurred frames, especially when large and complex motions occur. To solve this issue, in this paper we propose a novel Trajectory-aware Transformer for Video Frame Interpolation (TTVFI). In particular, we formulate the warped features with inconsistent motions as query tokens, and formulate relevant regions in a motion trajectory from two original consecutive frames into keys and values. Self-attention is learned on relevant tokens along the trajectory to blend the pristine features into intermediate frames through end-to-end training. Experimental results demonstrate that our method outperforms other state-of-the-art methods in four widely-used VFI benchmarks. Both code and pre-trained models will be released soon

    Flow Guidance Deformable Compensation Network for Video Frame Interpolation

    Full text link
    Motion-based video frame interpolation (VFI) methods have made remarkable progress with the development of deep convolutional networks over the past years. While their performance is often jeopardized by the inaccuracy of flow map estimation, especially in the case of large motion and occlusion. In this paper, we propose a flow guidance deformable compensation network (FGDCN) to overcome the drawbacks of existing motion-based methods. FGDCN decomposes the frame sampling process into two steps: a flow step and a deformation step. Specifically, the flow step utilizes a coarse-to-fine flow estimation network to directly estimate the intermediate flows and synthesizes an anchor frame simultaneously. To ensure the accuracy of the estimated flow, a distillation loss and a task-oriented loss are jointly employed in this step. Under the guidance of the flow priors learned in step one, the deformation step designs a pyramid deformable compensation network to compensate for the missing details of the flow step. In addition, a pyramid loss is proposed to supervise the model in both the image and frequency domain. Experimental results show that the proposed algorithm achieves excellent performance on various datasets with fewer parameters
    • …
    corecore